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Plan

X Monday Epistemic utility theory, Decision- and game-theoretic background:
Nash equilibrium

X Tuesday Introduction to game theory: rationalizability, epistemic game
theory, introduction to backward induction

X Wednesday backward and forward induction, Iterated games and learning,
Skyrms’s model of rational deliberation (introduction);

X Thursday Skyrms’s model of rational deliberation; brief introduction to
webppl; Game-theoretic reasoning in webppl; Coordination games
(comparing Skyrms’s model of deliberation and the webppl approach)

X Friday Models of game-theoretic reasoning
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Strategic Reasoning

“The word eductive will be used to describe a dynamic process by means of
which equilibrium is achieved through careful reasoning on the part of the players.
Such reasoning will usually require an attempt to simulate the reasoning
processes of the other players. Some measure of pre-play communication is
therefore implied, although this need not be explicit. To reason along the lines “if I
think that he thinks that I think...” requires that information be available on how an
opponent thinks.”
ad (pg. 184)

K. Binmore. Modeling Rational Players. Economics and Philosophy, 3,179 - 21, 1987.
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Deliberational Decision Theory

F. Arntzenius. No Regrest, or: Edith Piaf Revamps Decision Theory. Erkenntnis, 68, pgs. 277 -
297, 2008.

J. Joyce. Regret and Instability in Causal Decision Theory. Synthese, 187: 1, pgs. 123 - 145, 2012.

I. Douven. Decision theory and the rationality of further deliberation. Economics and Philosophy,
18, pgs. 303 - 328, 2002.
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Deliberational Decision Theory

Current Evaluation: If Prt characterizes your beliefs at time t, then at t you should
evaluate each act by its (causal, evidential) expected utility computed using Prt.

Full Information: You should act on your time-t utility assessments only if those
assessments are based on beliefs that incorporate all the evidence that is both
freely available to you at t and relevant to the question about what your acts are
likely to cause.

Sometimes initial opinions fix actions, but not always (e.g., Murder Lesion,
Psychopath Button)
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Deliberation in games

I The Harsanyi-Selten tracing procedure
I Brian Skyrms’ model of “dynamic deliberation”
I Robin Cubitt and Robert Sugden’s “reasoning based expected utility

procedure”
I Johan van Benthem et col.’s “virtual rationality announcements”

Different frameworks, common thought: the “rational solutions” of a game are the
result of individual deliberation about the “rational” action to choose.
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I What operations transform the models?

I Where does the “new information” come from? What are player i’s opponents
thinking about doing? (“update by emulation”)

I Why keep deliberating?
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Information Feedback

In the simplest case, deliberation is trivial; one calculates expected utility and
maximizes

Information feedback: “the very process of deliberation may generate information
that is relevant to the evaluation of the expected utilities. Then, processing costs
permitting, a Bayesian deliberator will feed back that information, modifying his
probabilities of states of the world, and recalculate expected utilities in light of the
new knowledge.”
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Rational deliberation in games

B. Skyrms (1990). The Dynamics of Rational Deliberation. Harvard University Press.

It is not just a question of what common knowledge obtains at the
moment of truth, but also how common knowledge is preserved,
created, or destroyed in the deliberational process which leads up to the
moment of truth. (pg. 159)
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G = 〈N, (Si)i∈N , (ui)i∈N〉

For each player i ∈ A, the state of indecision is a pair (Ii,Pi), where Ii ∈ ∆(Si) is
called i’s inclinations and Pi ∈ ∆(S−i) is i’s beliefs about the other player’s choice.

The expected utility of s ∈ Si is: EUi(s) =
∑

t∈S−i
Pi(t)ui(s, t).

The status quo is: SQi =
∑

si∈Si
Ii(si)EUi(si).
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Bob

A
nn

U L R

U 2,1 0,0 U

D 0,0 1,2 U

Pa = 〈0.2, 0.8〉 and Pb = 〈0.4, 0.6〉

EU(U) = 0.4 · 2 + 0.6 · 0 = 0.8
EU(D) = 0.4 · 0 + 0.6 · 1 = 0.6
EU(L) = 0.2 · 1 + 0.8 · 0 = 0.2
EU(R) = 0.2 · 0 + 0.8 · 2 = 1.6
SQA = 0.2 · EU(U) + 0.8 · EU(D) = 0.2 · 0.8 + 0.8 · 0.6 = 0.64
SQB = 0.4 · EU(L) + 0.6 · EU(R) = 0.4 · 0.2 + 0.6 · 1.6 = 1.04
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Nash dynamics

The covetability of a strategy s for player i is: covi(s) = max(EUi(s) − SQi, 0).

Then, Nash dynamics rule transforms Ii ∈ ∆(Si) into a new probability I′i ∈ ∆(Si)
as follows. For each s ∈ Si:

I′i (s) =
k · Ii(s) + covi(s)
k +
∑

s∈Si
covi(s)

,

where k > 0 is the “index of caution”.

13 / 43



Nash dynamics

The covetability of a strategy s for player i is: covi(s) = max(EUi(s) − SQi, 0).

Then, Nash dynamics rule transforms Ii ∈ ∆(Si) into a new probability I′i ∈ ∆(Si)
as follows. For each s ∈ Si:

I′i (s) =
k · Ii(s) + covi(s)
k +
∑

s∈Si
covi(s)

,

where k > 0 is the “index of caution”.

13 / 43



Update by emulation

1. The players’ initial states of indecision and the dynamical rule used to update
inclinations are common knowledge.

2. Each player assumes that the other players are rational deliberators who
have just carried out a similar process. So, she can simply go through their
calculations to see their new states of indecision and update her beliefs for
their acts accordingly.
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BoS - Nash Dynamics
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Bayes dynamics

The Bayes dynamics, also called Darwin dynamics, transforms Ii ∈ ∆(Si) into a
new probability I′i ∈ ∆(Si) as follows. For each s ∈ Si:

I′i (s) = Ii(s) +
1
k

Ii(s)
EUi(s) − SQi

SQi
.

where k > 0 is the “index of caution”.
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BoS - Bayes
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Battle of the sexes
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Matching pennies - Nash deliberators
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Prisoner’s dilemma - Nash deliberators
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Stag hunt

Bob

A
nn

U S H

S 3, 3 0, 2 U

H 2, 0 1, 1 U

(S, S) and (H,H) are Nash equilibria
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Stag hunt - Nash deliberators
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Samuelson’s game

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U
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Samuelson game - Nash deliberators

24 / 43



Samuelson game
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Learning to Play

Theorem. If players start with subjectively rational strategies, and if their
individual subjective beliefs regarding opponents’ strategies are “compatible with
truly chosen strategies”, then they must converge in a finite amount of time to play
according to an ε-Nash in the repeated game.

E. Kalai and E. Lehrer. Rational Learning Leads to Nash Equilibrium. Econometrica, 61:5, pgs.
1019 - 1045, 1993.

Y. Shoham, R. Powers and T. Granager. If multi-agent learning is the answer, what is the question?.
Artificial Intelligence, 171(7), pgs. 365 - 377, 2007.
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Modeling Deliberation in Games
I Characterize outcomes in terms of accessibility and/or stability

I Relation with correlated equilibrium (correlation through rational deliberation)

I Comparison with other models of deliberation in games (categorize pure
strategies)

I Generalize the basic model: extensive games (with imperfect information),
imprecise probabilities, more than two players

I Weaken the common knowledge assumptions (payoffs, beliefs, dynamical
rule, updating by emulation)

I Deliberation in decision theory (“deliberation crowds out prediction”, logical
omniscience)
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Deliberation on extensive games
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a

b

1,2 3,3

2,1

IO

L R

L R

O

I

2, 1 2, 1

1, 2 3, 3
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Ann is Nash, Bob is Nash Ann is Bayes, Bob is Bayes

Ann is Nash, Bob is Bayes Ann is Bayes, Bob is Nash
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a

b

1,2 3,3

2,1

IO

L R

L R

O

I

2, 1 2, 1

1, 2 3, 3

When the players deliberate simultaneously, Bob’s expected utility of L is a
weighted average of his payoff if Ann chooses O and his payoff if Ann chooses I.

However, when deliberating on the extensive form game, Bob should calculate the
expected utilities by conditioning on his information at his decision node: Bob
should assign probability 0 to Ann choosing O, and this does not change during
deliberation.
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Ann is Nash, Bob is Nash Ann is Bayes, Bob is Bayes

Ann is Nash, Bob is Bayes Ann is Bayes, Bob is Nash
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A

B B

8,10 11,11 9,9 12,11

10,12
a1

a3 a2

b2 b1 b2 b1

Bob

A
nn

U b1 if a2 or a3 b2 if a2 or a3

a1 10,12 10,12 U

a2 12,11 9,9 U

a3 11,11 8,10 U

(Cf. the various notions of sequential equilibrium) 33 / 43



A

B B

8,10 11,11 9,9 12,11

10,12
a1

a3 a2

b2 b1 b2 b1

I No matter what Ann’s probabilities are for playing a2 and a3, Bob is always
better off playing b1.

I Thus, Bob will play b1 at his information set
I Knowing this, Ann will play a2

I Dynamic deliberation will never lead to the “bad” equilibrium (a1, b2 if a2 or a3)
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a a

2,22,2

L R

U

D

3, 1 0, 0

0, 0 1, 3
O

I

O

I

L R

O

IU

ID

2, 2 2, 2

3, 1 0, 0

0, 0 1, 3
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Nash deliberators Bayes deliberators
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Note that both Bayes and Nash deliberators converge on (IU,L) and (O, ID).

If Bob is a backward induction reasoner, then he ignores Ann’s initial move as he
deliberates between L and R.

On the other hand, if Bob is a forward induction reasoner, then, during
deliberation, he should assign probability 0 to Ann choosing I then D (since it is
strictly dominated by choosing O). This belief about Ann’s choice does not
change during deliberation.
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J. McKenzie Alexander. Local interactions and the dynamics of rational deliberation. Philosophical
Studies 147 (1), 2010.
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Consider a social network 〈N,E〉 (connected graph)

Convention: If there is a directed edge from A to B, then A always plays row and B
always play column, and the interactions of Row and Column are symmetric in the
available strategies.

Let νi = {i1, . . . ij} be i’s neighbors

p′a,b(t + 1) is represents the incremental refinement of player a’s state of indecision
given his knowledge about player b’s state of indecision (at time t + 1).

Pool this information to form your new probabilities:

pi(t + 1) =

k∑
j=1

wi,ijp
′
i,ij(t + 1)
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Billy
Boxing Ballet

Maggie
Boxing (2,1) (0,0)
Ballet (0,0) (1,2)

Fig. 7 The game of Battle of the Sexes.

80.7, 0.3<
80.7, 0.3<

80.7, 0.3<
80.4, 0.6<

80.4, 0.6<

80.4, 0.6<
(a) Initial conditions

81., 0<
81., 0<

81., 0<
80.4134, 0.5866<

80, 1.<

80, 1.<
(b) t = 1,000,000

Fig. 8 Battle of the Sexes played by
Nash deliberators (k = 25) on two cy-
cles connected by a bridge edge (val-
ues rounded to the nearest 10�4).

is just the opposite of that of players 1, 2, 3, and 8; hence the overall population state is
stable under the Nash dynamics.

4. Battle of the Sexes

Turning now from anti-coordination to coordination games, consider the game of Battle
of the Sexes as defined by the payoff matrix in figure 7. Simulations of the deliberational
dynamics for both Nash and Bayesian deliberators on a cycle of length three reveal that,
on that simple network, the population will coordinate on either All Go Boxing or All Go
To The Ballet. It is also straightforward to predict which of these two outcomes will come
about: look at the total aggregate probability assigned to Boxing and Ballet in the states of
indecision for the population. Whichever activity has more probability assigned to it will be
the activity the population converges upon.

The predictive success of that rule depends on the topology, though. Consider a graph
defined by the sequence of edges 1 ! 2 ! 3 ! 1, 4 ! 5 ! 6 ! 4 and 1 ! 4 (see figure 8).
If each player in the left “lobe” of graph has the state of indecision h.7, .3i and each player in
the right “lobe” has the state of indecision h.4, .6i, the total aggregate probability assigned to
Boxing in the population is 3.3, with Ballet receiving an aggregate of 2.7. Yet if each player
is a Nash deliberator with an index of caution k = 25, the left lobe converges to Boxing and
most of the right lobe converges to Ballet. This makes sense, given the topology, but it also
shows that the predictive rule which works on a simple cycle fails to work here.

It’s worth investigating what happens on more realistic and complex social networks.
Consider, then, the following sequence of simulations: for one thousand trials, generate a
random directed graph gi consisting of twenty vertices, and a random assignment of states
of indecision hpi1 , . . . ,pi20i to each vertex in gi.18 Then, for each of these initial conditions,
calculate the state resulting from stepping the model forward 1,000,000 iterations under the
Nash dynamics. Then do the same thing, except under Bayesian dynamics.

18 The random graphs were generated using the following procedure: each of the 190 possible edges had a
20% chance of being included. If the resulting graph was connected, it was used; if the resulting graph was
disconnected, it was thrown out and a new candidate was generated. The same graph was used for the ith trial
for both Nash and Bayes deliberators, as well as the same initial conditions.
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I Allowing for local interactions in the dynamics of rational deliberation breaks
the link between convergent points of the deliberative dynamics and Nash
equilibrium points of the underlying game.

I It is no longer true that all dynamical rules have fixed points that maximize
expected utility of the status quo.

I The effect of local interactions reveals reasons for preferring the Bayesian
dynamics over the Nash dynamics.
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Deliberation in games

I The Harsanyi-Selten tracing procedure
I Brian Skyrms’ model of “dynamic deliberation”
I Robin Cubitt and Robert Sugden’s “reasoning based expected utility

procedure”
I Johan van Benthem et col.’s “virtual rationality announcements”

EP. Dynamic models of rational deliberation in games. in Strategic Reasoning, van Benthem, Gosh,
and Verbrugge, ed., 2015.
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Introduction to webppl for coordination games
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