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Plan

X Monday Epistemic utility theory, Decision- and game-theoretic background:
Nash equilibrium

X Tuesday Introduction to game theory: rationalizability, epistemic game
theory, forward and backward induction; Iterated games and learning,
Skyrms’s model of rational deliberation I

X Wednesday Skyrms’s model of rational deliberation II; Introduction to
webppl; Game-theoretic reasoning in webppl

X Thursday Coordination games (comparing Skyrms’s model of deliberation
and the webppl approach)

X Friday Models of game-theoretic reasoning
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Yesterday

I Guess 2/3 average, Traveler’s Dilemma
I Expected utility theory
I Introduction to game theory
I Zero-sum games, Nash equilibrium
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From Decisions to Games, II

“[T]he fundamental insight of game theory [is] that a rational player must take into
account that the players reason about each other in deciding how to play.”

R. Aumann and J. Dreze. Rational Expectations in Games. American Economic Review, 98, pp.
72-86, 2008.
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Let G = 〈(Si)i∈N , (ui)i∈N〉 be a finite strategic game.

Σi = {p | p : Si → [0, 1] and
∑

si∈Si
p(si) = 1}

The mixed extension of G is the game 〈(Σi)i∈N , (Ui)i∈N〉 where for
σ ∈ Σ = Σ1 × · · · × Σn:

Ui(σ) =
∑

(s1,...,sn)∈S

σ1(s1)σ2(s2) · · ·σn(sn)ui(s1, . . . , sn)
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Theorem (Nash). Every finite game G has a Nash equilibrium in mixed strategies
(i.e., there is a Nash equilibrium in the mixed extension G).
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Not all equilibrium are created equal...
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Perfect equilibrium
Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Completely mixed strategy: a mixed strategy in which every strategy gets some
positive probability

ε-perfect equilibrium: a completely mixed strategy profile in which any pure
strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε goes to 0 of
ε-prefect equilibria. 9 / 74
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Perfect equilibrium
Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Isn’t (U,L) more “reasonable” than (D,R)?which every strategy gets some
positive probability

ε-perfect equilibrium: a completely mixed strategy profile in which any pure
strategy that is not a best reply receives probability less than ε

Prefect equilibrium: the mixed strategy profile that is the limit as ε goes to 0 of
ε-prefect equilibria. 9 / 74



Perfect equilibrium

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Completely mixed strategy: a mixed strategy in which every strategy gets some
positive probability

9 / 74



Perfect equilibrium

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 0,0 U

Completely mixed strategy: a mixed strategy in which every strategy gets some
positive probability

9 / 74



Normal form vs. Extensive form

A

B

-1,-1 1,1

0,0

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 -1,-1 1,1 U

a2 0,0 0,0 U

(Cf. the various notions of sequential equilibrium)
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Stag-Hunt

Bob

A
nn

U S H

S 3, 3 0, 2 U

H 2, 0 1, 1 U

(S, S) and (H,H) are Nash equilibria
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Stag-Hunt

Bob

A
nn

U S H

S 3, 3 0, 2 U

H 2, 0 1, 1 U

(S, S) is Pareto-superior, but (H,H) is less risky
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Bob

A
nn

U L C R

T 1, 1 2, 0 -2, 1 U

M 0, 2 1, 1 2, 1 U

B 1, -2 1, 2 1, 1 U

(T ,L) is the unique pure-strategy Nash equilibrium
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Bob

A
nn

U L C R

T 1, 1 2, 0 -2, 1 U

M 0, 2 1, 1 2, 1 U

B 1, -2 1, 2 1, 1 U

Why not play B and R?
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Why play such an equilibrium?

“Let us now imagine that there exists a complete theory of the zero-sum
two-person game which tells a player what to do, and which is absolutely
convincing. If the players knew such a theory then each player would have to
assume that his strategy has been “found out” by his opponent. The opponent
knows the theory, and he knows that the player would be unwise not to follow it...
a satisfactory theory can exist only if we are able to harmonize the two
extremes...strategies of player 1 ‘found out’ or of player 2 ‘found out.’ ” (pg. 148)

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton Uni-
versity Press, 1944.
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Why play such an equilibrium?

“Von Neumann and Morgenstern are assuming that the payoff matrix is common
knowledge to the players, but presumably the players’ subjective probabilities
might be private. Then each player might quite reasonably act to maximize
subjective expected utility, believing that he will not be found out, with the result
not being a Nash equilibrium.”
ad fasd f (Skyrms, pg. 14)
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Bob

A
nn

U L R

U 1,4 4,1 U

D 2,3 3,2 U

Suppose that Ann believes Bob will play L with probability 1/4, for whatever
reason. Then,

1 × 0.25 + 4 × 0.75 = 3.25 ≥ 2 × 0.25 + 3 × 0.75 = 2.75

But, L is maximizes expected utility no matter what belief Bob may have:

p + 3 = 4 × p + 3 × (1 − p) ≥ 1 × p + 2 × (1 − p) = 2 − p
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Playing a Nash equilibrium is required by the players rationality and common
knowledge thereof.

I Players need not be certain of the other players’ beliefs
I Strategies that are not an equilibrium may be rationalizable
I Sometimes considerations of riskiness trump the Nash equilibrium
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Bob

A
nn

U L C R

T 3, 2 0, 0 2, 3 U

M 0, 0 1, 1 0, 0 U

B 2, 3 0, 0 3, 2 U

(M,C) is the unique Nash equilibrium
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A
nn

U L C R

T 3, 2 0, 0 2, 3 U

M 0, 0 1, 1 0, 0 U

B 2, 3 0, 0 3, 2 U

Ann plays B because she thought Bob will play R
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Bob

A
nn

U L C R

T 3, 2 0, 0 2, 3 U

M 0, 0 1, 1 0, 0 U

B 2, 3 0, 0 3, 2 U

Bob was correct, but Ann was wrong

17 / 74



Bob

A
nn

U L C R X

T 3, 2 0, 0 2, 3 0, -5 U

M 0, 0 1, 1 0, 0 200,-5 U

B 2, 3 0, 0 3, 2 1,-3 U

Not every strategy is rationalizable: Ann can’t play M because she
thinks Bob will play X
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“Analysis of strategic economic situations requires us, implicitly or explicitly, to
maintain as plausible certain psychological hypotheses. The hypothesis that real
economic agents universally recognize the salience of Nash equilibria may well
be less accurate than, for example, the hypothesis that agents attempt to
“out-smart” or “second-guess” each other, believing that their opponents do
likewise.” (pg. 1010)

B. D. Bernheim. Rationalizable Strategic Behavior. Econometrica, 52:4, pgs. 1007 - 1028, 1984.
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“The rules of a game and its numerical data are seldom sufficient for logical
deduction alone to single out a unique choice of strategy for each player. To do so
one requires either richer information (such as institutional detail or perhaps
historical precedent for a certain type of behavior) or bolder assumptions about
how players choose strategies. Putting further restrictions on strategic choice is a
complex and treacherous task. But one’s intuition frequently points to patterns of
behavior that cannot be isolated on the grounds of consistency alone.” asdlfsadf
(pg. 1035)

D. G. Pearce. Rationalizable Strategic Behavior. Econometrica, 52, 4, pgs. 1029 - 1050, 1984.
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Taking stock

X Expected utility reasoning
X Introduction to game-theoretic reasoning: mixed strategies, Nash equilibrium,

rationalizability
I A brief introduction to epistemic game theory
I Backward and forward induction
I Prisoner’s dilemma and repeated games
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Game Models

I A game is a partial description of a set (or sequence) of interdependent
(Bayesian) decision problems.

A game will not normally contain enough information to determine what the
players believe about each other.

I A model of a game is a completion of the partial specification of the
Bayesian decision problems and a representation of a particular play of the
game.

I There are no special rules of rationality telling one what to do in the absence
of degrees of belief except: decide what you believe, and then maximize
(subjective) expected utility.
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Models of Games

Suppose that G is a game.

I Outcomes of the game: S = Πi∈NSi

I A profile is a vector ~s ∈ S, specifying an action for each player
I Player i’s partial beliefs (or conjecture): Pi ∈ ∆(S−i)

∆(X) is the set of probabilities measures over X
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Models of Games, continued
G = 〈N, (Si, ui)i∈N〉 is a strategic (form of a) game.

I W is a set of possible worlds (possible outcomes of the game)

I s is a function s : W → Πi∈NSi, write si(w) for the ith component of s(w)

I If ~s ∈ Πi∈NSi, then [~s] = {w | s(w) = ~s}; if si ∈ Si, then [si] = {w | si(w) = si}; and
if X ⊆ S, [X] =

⋃
s∈X[s].

I ex ante beliefs: For each i ∈ N, let Pi ∈ ∆(W) (the set of probability
measures on W). Two assumptions:

I [s] is measurable for all strategy profiles s ∈ S
I Pi([si]) > 0 for all si ∈ Si
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ex interim beliefs: Pi,w ∈ ∆(S−i)

I ...given player i’s choice: Pi,w(·) = Pi(· | [si(w)])
I ...given all player i knows: Pi,w(·) = Pi(· | Ki), Ki ⊆ [si(w)]
I ...given all player i fully believes: Pi,w(·) = Pi(· | Bi), Bi ⊆ [si(w)]

Expected utility of strategy si ∈ Si: Given P ∈ ∆(S−i),

EUi,P(si) =
∑

s−i∈S−i

P(s−i)ui(si, s−i)
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An Example
Bob

A
nn

U L R
U 1,2 0,0 U

D 0,0 2,1 U

Ann’s choice is optimal
(given her information)
Bob’s choice is optimal
(given her information)
Ann considers it
possible Bob is
irrational

1·PA(L)+0·PA(R) ≥ 0·PA(L)+2·PA(R)
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For any P ∈ ∆(S−i) and si ∈ Si, EUi,P(si) =
∑

s−i∈S−i
P(s−i)ui(si, s−i)

For any w ∈ W and si ∈ Si, EUi,w(si) =
∑

s−i∈S−i
Pi,w([s−i])ui(si, s−i)

Rati = {w | EUi,w(si(w)) ≥ EUi,w(si) for all si ∈ Si}

Each P ∈ ∆(W) is associated with PS ∈ ∆(S) as follows: for all s ∈ S, PS(s) = P([s])

A mixed strategy σ ∈ Πi∈N∆(Si), Pσ ∈ ∆(S), Pσ(s) = σ1(s1) · · ·σn(sn)
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Characterizing Nash Equilibria

Theorem (Aumann). σ is a Nash equilibrium of G iff there exists a model
MG = 〈W, (Pi)i∈N , s〉 such that:
I for all i ∈ N, Rati = W;
I for all i, j ∈ N, Pi = Pj; and
I for all i ∈ N, PS

i = Pσ.
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Rationalizability

A best reply set (BRS) is a sequence (B1,B2, . . . ,Bn) ⊆ S = Πi∈NSi such that for
all i ∈ N, and all si ∈ Bi, there exists µ−i ∈ ∆(B−i) such that si is a best response to
µ−i: I.e.,

bi = arg max
si∈Si

EUi,µ−i(si)
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2

1

b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 5, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 0 0, -2 0, 0 10, -1

I (a2, b2) is the unique Nash equilibria, hence ({a2}, {b2}) is a BRS
I ({a1, a3}, {b1, b3}) is a BRS
I ({a1, a2, a3}, {b1, b2, b3}) is a full BRS
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Theorem (Bernheim; Pearce; Brandenburger and Dekel; . . . ). (B1,B2, . . . ,Bn) is a
BRS for G iff there exists a modelMG = 〈W, (Pi)i∈N , s〉 such that for all i ∈ N,
Rati = W and [B1 × · · · × Bn] = W.
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Bob

A
nn

U L R

U 2,2 4,1 U

D 1,4 3,3 U

Game 1

Bob

A
nn

U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: D strictly dominates U and R strictly dominates L.

Game 2: U strictly dominates D, and after removing D, L strictly dominates R.

Theorem. The projection of any event where the players are rational and there is
common belief of rationality are strategies that survive iterative removal of strictly
dominated strategies (and, conversely...).
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Bob
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U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U strictly dominates D and L strictly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly dominates R.

Theorem. In all models where the players are rational and there is common belief
of rationality, the players choose strategies that survive iterative removal of strictly
dominated strategies (and, conversely...).

32 / 74



Comparing Dominance Reasoning and MEU

G = 〈N, (Si)i∈N , (ui)i∈N〉

X ⊆ S−i (a set of strategy profiles for all players except i)

s, s′ ∈ Si, s strictly dominates s′ with respect to X provided

∀s−i ∈ X, ui(s, s−i) > ui(s′, s−i)

p ∈ ∆(X), s is a best response to p with respect to X provided

∀s′ ∈ Si, EU(s, p) ≥ EU(s′, p)
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Bob

A
nn

U L R

U 5,∗ 1,∗ U

M 1,∗ 5,∗ U

D 2,∗ 2,∗ U

D is strictly dominated by (0.5U, 0.5M).
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Strict Dominance and MEU

Proposition. Suppose that G = 〈N, (Si)i∈N , (ui)i∈N〉 is a strategic game and
X ⊆ S−i. A strategy si ∈ Si is strictly dominated (possibly by a mixed strategy) with
respect to X iff there is no probability measure p ∈ ∆(X) such that si is a best
response to p.

35 / 74



Let P ∈ ∆(X) be a probability measure, the support of P is
supp(P) = {x ∈ X | P(x) > 0}.

A probability measure P ∈ ∆(X) is said to be a full support probability measure
on X provided supp(P) = X.
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Bob

A
nn

U L R

U 3,3 1,1 U

D 2,2 2,2 U

Is R rationalizable?

There is no full support probability such that R is a best response
Should Ann assign probability 0 to R or probability > 0 to R?
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Strategic Reasoning and Admissibility

“The argument for deletion of a weakly dominated strategy for player i is that he
contemplates the possibility that every strategy combination of his rivals occurs
with positive probability. However, this hypothesis clashes with the logic of iterated
deletion, which assumes, precisely, that eliminated strategies are not expected to
occur.”

Mas-Colell, Whinston and Green. Introduction to Microeconomics. 1995.
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A Puzzle

R. Cubitt and R. Sugden. Rationally Justifiable Play and the Theory of Non-cooperative games.
Economic Journal, 104, pgs. 798 - 803, 1994.

R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of common knowledge
of rationality. Manuscript, 2011.
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Bob

A
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U L R

U 1,1 0,0 U

D 0,0 0,0 U

Game 1

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly dominates R.

Theorem. The projection of any event where the players are rational and there is
common belief of rationality are strategies that survive iterative removal of strictly
dominated strategies (and, conversely...).
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Game 1: U weakly dominates D and L weakly dominates R.

Game 2: But, now what is the reason for not playing D?
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Game 1

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: But, now what is the reason for not playing D?

Theorem (Samuelson). There is no model of Game 2 satisfying common
knowledge of rationality (where rationality incorporates weak dominance). adfa
sfas df adsf asd fa

40 / 74



Common Knowledge of Admissibility

Bob
A

nn
T L R

T 1,1 1,0 U

B 1,0 0,1 U

T ,L T ,R T , {L,R}

B,L B,R B, {L,R}

{T ,B},L {T ,B},R {T ,B}, {L,R}

There is no model of this game with common knowledge of admissibility.
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Common Knowledge of Admissibility

Bob
A

nn
T L R

T 1,1 1,0 U

B 1,0 0,1 U

T ,L T ,R T , {L,R}

B,L B,R B, {L,R}

{T ,B},L {T ,B},R {T ,B}, {L,R}

What is wrong with this model? asdf ad fa sdf a fsd asdf adsf adfs
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Common Knowledge of Admissibility

Bob
A

nn
T L R

T 1,1 1,0 U

B 1,0 0,1 U

T ,L T ,R T , {L,R}

B,L B,R B, {L,R}

{T ,B},L {T ,B},R {T ,B}, {L,R}

Privacy of Tie-Breaking/No Extraneous Beliefs: If a strategy is rational for an
opponent, then it cannot be “ruled out”.
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Summary

I Game models describe the informational context of a game.

I Game models can be used to characterize different solution concepts (e.g.,
iterated strict dominance, iterated weak dominance, Nash equilibrium,
correlated equilibrium,...)
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BI Puzzle

A B A

(2,1) (1,6) (7,5)

(6,6)
R1 r R2

D1 d D2
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BI Puzzle?

A B A
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I know Ann is rational,
but what should I do if
she’s not...
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(3, 3)A B C 7, 7
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Bob

A
nn

U t l

T 1,0 1,0 U

L 1,1 0,1 U

A B 0, 1

1, 0 1, 1

L

T t

l

I The strategies of both players are rationalizable.
I Only T is perfectly rational for Ann and t is perfectly rational for Bob.
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Bob

A
nn

U t l

T 2,2 2,2 U

LT 1,1 3,3 U

LL 1,1 0,0 U

A B A 0, 0

2, 2 1, 1 3, 3

L

T t

l

T

L
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Materially Rational: every choice actually made is optimal (i.e., maximizes
subjective expected utility).

Substantively Rational: the player is materially rational and, in addition, for each
possible choice, the player would have chosen rationally if she had had the
opportunity to choose.

E.g., Taking keys away from someone who is drunk.

49 / 74



Materially Rational: every choice actually made is optimal (i.e., maximizes
subjective expected utility).

Substantively Rational: the player is materially rational and, in addition, for each
possible choice, the player would have chosen rationally if she had had the
opportunity to choose.

E.g., Taking keys away from someone who is drunk.

49 / 74



Bob

A
nn

U t l

T 2,2 2,2 U

LT 1,1 3,3 U

LL 1,1 0,0 U

A B A 0, 0

2, 2 1, 1 3, 3

L

T t

l

T

L

I Suppose that Bob believes that Ann will choose T with probability 1; what
should he do? This depends on what he thinks Ann would on the hypothesis
that his belief about her is mistaken.

I Suppose that if Bob were surprised by her, then he concludes she is
irrational, selecting L on her second move. Bob’s choice of t is perfectly
rational.
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I Suppose Ann is sure that Bob will choose t, which is the only perfectly
rational choice for Bob. Then, Ann’s only rational choice is T.

I So, it might be that Ann and Bob both know each other’s beliefs about each
other, and are both perfectly rational, but they still fail to coordinate on the
optimal outcome for both.
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A B A 0, 0

2, 2 1, 1 3, 3

L

T t
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T

L

I Perhaps if Bob believed that Ann would choose L are her second move then
he wouldn’t believe she was fully rational, but it is not suggested that he
believes this.

I Divide Ann’s strategy T into two TT: T, and I would choose T again on the
second move if I were faced with that choice” and TL: “T, but I would choose
L on the second move...”

I Of these two only TT is rational
I But if Bob learned he was wrong, he would conclude she is playing LL.
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“To think there is something incoherent about this combination of beliefs and
belief revision policy is to confuse epistemic with causal counterfactuals—it would
be like thinking that because I believe that if Shakespeare hadn’t written Hamlet, it
would have never been written by anyone, I must therefore be disposed to
conclude that Hamlet was never written, were I to learn that Shakespeare was in
fact not its author”
area (pg. 152, Stalnaker)
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1. If Shakespeare had not written Hamlet, it would never have been written.
2. If Shakespeare didn’t write Hamlet, someone else did.

1. is a causal counterfactual, and 2. is an expression of a belief revision policy.
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1. General Smith is a shrewd judge of character—he knows (better than I) who
is brave and who is not.

2. The general sends only brave people into battle.
3. Private Jones is cowardly.

I believe that (1) Jones would run away if they were sent into battle and (2) if
Jones is sent into battle, then they won’t run away.
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1. Ann cheats — she has seen her opponent’s cards.
2. Ann has a losing hand, since I have seen both her hand and her opponent’s.
3. Ann is rational.

So, I conclude that she will not bet. But how should I revise my beliefs if I learn
that Ann did bet?

It may be perfectly reasonable for me to be disposed to give up 2.

I believe that (1) I Ann were to bet, she would lose (since she has a losing hand)
and (2) If I were to learn that she did bet, I would conclude she will win.
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I Bob believes that Ann is playing TT: Initially chooses T, and choose T, if she
would have a second chance to move.

I If Bob learns that Ann does not play T, then he believes that she will play LL
I Ann believes all of the above about Bob.
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In a game modelMG = 〈W, (Pi)i∈N , s〉, different states represent different beliefs
only when the agent is doing something different.

Pi,w(E) = Pi(E | [si(w)])

To represent different explanations (i.e., beliefs) for the same strategy choice, we
would need a set of models {MG

1 ,M
G
2 , . . .}.
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In a game modelMG = 〈W, (Pi)i∈N , s〉, different states represent different beliefs
only when the agent is doing something different.

Pi,w(H) = Pi(H | Bi,w), Bi,w ⊆ [si(w)]

Two way to change beliefs: Pi(· | E∩Bi,w) and Pi(· | B′i,w) (conditioning on 0 events).
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Game Models

Richer models of a game: lexicographic probabilities, conditional probability
systems, non-standard probabilities, plausibility models, . . .
(type spaces)

“The aim in giving the general definition of a model is not to propose an original
explanatory hypothesis, or any explanatory hypothesis, for the behavior of players
in games, but only to provide a descriptive framework for the representation of
considerations that are relevant to such explanations, a framework that is as
general and as neutral as we can make it.” (pg. 35)

R. Stalnaker. Knowledge, Belief and Counterfactual Reasoning in Games. Economics and Philos-
ophy, 12(1), pgs. 133 - 163, 1996.
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