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Plan

X Monday Epistemic utility theory, Decision- and game-theoretic background:
Nash equilibrium

X Tuesday Introduction to game theory: rationalizability, epistemic game
theory, forward and backward induction; Iterated games and learning,
Skyrms’s model of rational deliberation I

X Wednesday Skyrms’s model of rational deliberation II; Introduction to
webppl; Game-theoretic reasoning in webppl

X Thursday Coordination games (comparing Skyrms’s model of deliberation
and the webppl approach)

X Friday Models of game-theoretic reasoning
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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.

pacuit.org/games/avg
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The Guessing Game, again

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.
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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.

What number should you guess? 100, 99, . . . , 67, . . . , 2, 1
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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.

What number should you guess? ���HHH100, ��ZZ99, . . . , ��ZZ67, . . . , �S2, 1
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Traveler’s Dilemma
1. You and your friend write down an integer between 2 and 100 (without

discussing).

2. If both of you write down the same number, then both will receive that
amount in dollars from the airline in compensation.

3. If the numbers are different, then the airline assumes that the smaller number
is the actual price of the luggage.

4. The person that wrote the smaller number will receive that amount plus $2
(as a reward), and the person that wrote the larger number will receive the
smaller number minus $2 (as a punishment).

Suppose that you are randomly paired with another person from class. What
number would you write down?

pacuit.org/games/td
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Plan

I Expected utility
I Basic game-theoretic reasoning: Nash equilibrium, rationalizability
I Epistemic game theory, correlated equilibrium
I Backward and forward induction
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Decision Problems
In many circumstances the decision maker doesn’t get to choose outcomes
directly, but rather chooses an instrument that affects what outcome actually
occurs.

Economists distinguish between choice under:

I certainty: highly confident about the relationship between actions and
outcomes

I risk: clear sense of possibilities and their likelihoods

I uncertainty: the relationship between actions and outcomes is so imprecise
that it is not possible to assign likelihoods
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Decision Problems

A

B

w1 w2 · · · wn−1 wn

max({u(A(wi)) −max({u(Ai(wi)) | Ai ∈ Act})
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Decision Problems

A

B

w1 w2 · · · wn−1 wn

An act is a function F : W → O
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Strict Dominance

=⇒

MaxRegretExpUtil

A

B

w1 w2 · · · wn−1 wn

> > > > >

∀ w ∈ W, u(A(w)) > u(B(w))
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Weak Dominance

=⇒

MaxRegretExpUtil

A

B

w1 w2 · · · wn−1 wn

≥ ≥ > ≥ >

∀ w ∈ W, u(A(w)) ≥ u(B(w)) and ∃ w ∈ W, u(A(w)) > u(B(w))
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MaxMin (Security)

=⇒

MaxRegretMin

A

B

w1 w2 · · · wn−1 wn

min({u(A(w)) | w ∈ W}) > min({u(B(w)) | w ∈ W})
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MaxMax

=⇒

MaxRegretMax

A

B

w1 w2 · · · wn−1 wn

max({u(A(w)) | w ∈ W}) > max({u(B(w)) | w ∈ W})
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Maximize (Subjective) Expected Utility

=⇒

MaxRegretExpUtil

A

B

w1 w2 · · · wn−1 wn

∑
w∈W PA(w) ∗ u(A(w)) >

∑
w∈W PA(w) ∗ u(B(w))
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Subjective Expected Utility

Probability: Suppose that W = {w1, . . . ,wn} is a finite set of states. A probability
function on W is a function P : W → [0, 1] where

∑
w∈W P(w) = 1 (i.e.,

P(w1) + P(w2) + · · · + P(wn) = 1).

Suppose that A is an act for a set of outcomes O (i.e., A : W → O). The expected
utility of A is: ∑

w∈W

P(w) ∗ u(A(w))
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EU(A) =
∑

o∈O PA(o) × U(o)

Expected utility of action A Utility of outcome o

Probability of outcome o conditional on A
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PA(o): probability of o conditional on A — how likely it is that outcome o will occur,
on the supposition that the agent chooses act A.

Evidential: PA(o) = P(o | A) =
P(o & A)

P(A)

Classical: PA(o) =
∑

s∈S P(s)fA,s(o), where

fA,s(o) =

1 A(s) = o
0 A(s) , o

Causal: PA(o) = P(A� o)

P(“if A were performed, outcome o would ensue”)

(Lewis, 1981)
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Dominance and Act-State Dependence

w1 w2

A 1 3
B 2 4
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Dominance and Act-State Dependence

Dominance reasoning is appropriate only when probability of outcome is
independent of choice.

(A nasty nephew wants inheritance from his rich Aunt. The nephew wants the
inheritance, but other things being equal, does not want to apologize. Does
dominance give the nephew a reason to not apologize? Whether or not the
nephew is cut from the will may depend on whether or not he apologizes.)
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Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost
certainly be better off in the long run. By performing a random experiment
sufficiently many times, the probability that the average outcome differs from the
expected outcome can be rendered arbitrarily small.

Gambler’s Ruin: Suppose Ann and Bob start with $1000 each and flip a fair coin.
Ann gives Bob $1 if H and Bob gives Ann $1 if T. If they flip the coin a sufficiently
large number of times, each player is guaranteed to face a sequence of flips that
bankrupts them. The player that faces such a sequence first, will never have an
opportunity to feel the effects of the Law of Large Numbers.
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Expected Utility Theory

R. A. Briggs. Normative Theories of Rational Choice: Expected Utility. Stanford Encyclopedia of
Philosophy, 2014
https://plato.stanford.edu/entries/rationality-normative-utility/.
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Expected Utility Theory

Representation theorems by Von Neumann-Morgenstern, Aumann-Anscombe,
and Savage.

Some issues:

I The axioms are too strong. Do rational decisions have to obey these axioms?

I No action guidance. Rational decision makers do not prefer an act because
its expected utility is favorable, but can only be described as if they were
acting from this principle.

I Utility without chance. It seems odd from a linguistic point of view to say that
the meaning of utility has something to do with preferences over lotteries.
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Issues

I Preference, choice and utility
I Preferences satisfy completeness and transitivity (Money-pump argument)
I Allais paradox: risk-aversion
I Ellsberg paradox: ambiguity-aversion
I Newcomb’s paradox, Death in Damascus, Pyschopath button problem,

irrational choice: Act-state dependence
I Framing issues
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From Decisions to Games, I

Commenting on the difference between Robin Crusoe’s maximization problem
and the maximization problem faced by participants in a social economy, von
Neumann and Morgenstern write:

“Every participant can determine the variables which describe his own actions but
not those of the others. Nevertheless those “alien” variables cannot, from his point
of view, be described by statistical assumptions.

This is because the others are
guided, just as he himself, by rational principles—whatever that may mean—and
no modus procedendi can be correct which does not attempt to understand those
principles and the interactions of the conflicting interests of all participants.”
addasdfafds (vNM, pg. 11)
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Game Situations

Bob

A
nn

U L R

U 1,1 0,0 U

D 0,0 1,1 U

1. a group of self-interested agents (players) involved in some interdependent
decision problem, and

the players recognize that they are engaged in a game situation
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Just Enough Game Theory

A game is a mathematical model of a strategic interaction that includes

I the actions the players can take
I the players’ interests (i.e., preferences),
I the “structure” of the decision problem

It does not specify the actions that the players do take.
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Games

B
l r

A
u 3, 1 0, 0
d 0, 0 1, 3

A

B B

(3,1) (0,0) (3,1) (0,0)

u d

l r l r

B
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A
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From Decisions to Games, II

“[T]he fundamental insight of game theory [is] that a rational player must take into
account that the players reason about each other in deciding how to play.”

R. Aumann and J. Dreze. Rational Expectations in Games. American Economic Review, 98, pp.
72-86, 2008.
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Solution Concept

A solution concept is a systematic description of the outcomes that may emerge
in a family of games.

This is the starting point for most of game theory and includes many variants:
Nash equilibrium, backwards induction, or iterated dominance of various kinds.

These are usually thought of as the embodiment of “rational behavior” in some
way and used to analyze game situations.
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Let G = 〈(Si)i∈N , (ui)i∈N〉 be a finite strategic game (each Si is finite and the set of
players N is finite).

A strategy profile is an element σ ∈ S = S1 × · · · × Sn

σ is a (pure strategy) Nash equilibrium provided for all i, for all si ∈ Si,

ui(σ) ≥ ui(si, σ−i)

25 / 35



Zero-Sum Games
Bob

A
nn

U L R

U 1,4 4,1 U

D 2,3 3,2 U

CE 2,3 3,2 2

What should Ann do? asdfasdf asdf asdfjasdfasd f asdf asd f asd fasd
It depends on what she expects Bob to do, but this depends on what she
thinks Bob expects her to do, and so on...
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Zero-Sum Games
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A
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U L R
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Zero-Sum Games
Bob

A
nn

U L R

U 1,4 4,1 1

D 2,3 3,2 2

CE 3 1 2

The profile of security strategies (D,L) is a Nash equilibrium
It depends on what she expects Bob to do, but this depends on what she
thinks Bob expects her to do, and so on...
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Matching Pennies

Bob

A
nn

U H T

H 1,-1 -1, 1 U

T -1,1 1,-1 U

There are no pure strategy Nash equilibria.
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Mixed Strategies

Bob

A
nn

U H T

H 1,-1 -1, 1 U

T -1,1 1,-1 U

A mixed strategy is a probability distribution over the set of pure strategies. For
instance:

I [1/2 : H, 1/2 : T]
I [1/3 : H, 2/3 : T]
I ...
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Mixed Extension

L R

U

D

1,−1

−1, 1

−1, 1

1,−1

p

q

pq − p(1 − q) − (1 − p)q + (1 − p)(1 − q), −pq + p(1 − q) + (1 − p)q − (1 − p)(1 − q)
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Matching Pennies

Bob

A
nn

U H T

H 1,-1 -1, 1 U

T -1,1 1,-1 U

The mixed strategy ([1/2 : H, 1/2 : T], [1/2 : H, 1/2 : T]) is the only Nash
equilibrium.
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Theorem (Von Neumann). For every two-player zero- sum game with finite
strategy sets S1 and S2, there is a number v, called the value of the game such
that:

1. v = maxp∈∆(S1) minq∈∆(S2) U1(p, q) = minq∈∆(S2) maxp∈∆(S1) U1(p, q)
2. The set of mixed Nash equilibria is nonempty. A mixed strategy profile (p, q)

is a Nash equilibrium if and only if

p ∈ argmaxp∈∆(S1) min
q∈∆(S2)

U1(p, q)

q ∈ argmaxq∈∆(S2) min
p∈∆(S1)

U1(p, q)

3. For all mixed Nash equilibria (p, q), U1(p, q) = v
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In zero-sum games

I There exists a mixed strategy Nash equilibrium
I There may be more than one Nash equilibria
I Security strategies are always a Nash equilibrium
I Components of Nash equilibria are interchangeable: If σ and σ′ are Nash

equilibria in a 2-player game, then (σ1, σ
′
2) is also a Nash equilibrium.
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Let G = 〈(Si)i∈N , (ui)i∈N〉 be a finite strategic game.

Σi = {p | p : Si → [0, 1] and
∑

si∈Si
p(si) = 1}

The mixed extension of G is the game 〈(Σi)i∈N , (Ui)i∈N〉 where for
σ ∈ Σ = Σ1 × · · · × Σn:

Ui(σ) =
∑

(s1,...,sn)∈S

σ1(s1)σ2(s2) · · ·σn(sn)ui(s1, . . . , sn)
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Theorem (Nash). Every finite game G has a Nash equilibrium in mixed strategies
(i.e., there is a Nash equilibrium in the mixed extension G).
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Mixed Strategies
“We are reluctant to believe that our decisions are made at random. We prefer to
be able to point to a reason for each action we take. Outside of Las Vegas we do
not spin roulettes.” (Rubinstein)

I One can think about a game as an interaction between large populations...a
mixed strategy is viewed as the distribution of the pure choices in the
population.

I Harsanyi’s purification theorem: A player’s mixed strategy is thought of as a
plan of action which is dependent on private information which is not
specified in the model. Although the player’s behavior appears to be random,
it is actually deterministic.

I Mixed strategies are beliefs held by all other players concerning a player’s
actions.
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