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Plan

X Monday Representing judgements; Introduction to judgement aggregation;
Aggregation paradoxes I

X Tuesday Aggregation paradoxes II, Axiomatic characterizations of
aggregation methods I

X Wednesday Axiomatic characterizations of probabilistic opinions

X Thursday Pooling imprecise probabilities; Distance-based
characterizations; Aumann’s agreeing to disagree theorem and related
results

X Friday Merging of probabilistic opinions (Blackwell-Dubins Theorem); Belief
polarization; Concluding remarks
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Learning in a group

1. Start with the same beliefs, receive the same evidence.
(Convergence)

2. Start with the same beliefs, receive different evidence.

3. Start with different beliefs, receive the same evidence.

4. Start with different beliefs, receive different evidence.
(Polarization)
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Events

Suppose that W is a non-empty set and F is a σ-field on W.

The elements of W can be thought of as possible worlds and the members of F
as propositions.

Example: W is set of all infinite sequences of coin tosses (W = {σ | σ ∈ {H,T}ω}
and F is all propositions about coin tossing events of interest:
I [Hn = k]: There are k heads in the first n rounds.
I [limn→∞Hn = 0.5]: The number of heads converges to 0.5 as the number of

flips increases (e.g., the coin is unbiased).
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Evidence

Let E1,E2, . . . ,En, . . . be an infinite sequence of partitions on W such that En+1

refines En.

En is the information that the agent receives at time n.

En[w] is the element of En containing w.

For each n, let Fn be the σ-algebra generated by En. We assume that F = ∪nFn.
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Example

W = {σ | σ ∈ {H,T}ω}

[HH]

[HT]

[TH]

[TT]

1. E0 = {W}

2. E1 = {[H], [T]}

3. E2 = {[HH], [HT], [TH], [TT]}
...

...
...

[H] = [HH] ∪ [HT] [T] = [TH] ∪ [TT]

Notation: Xω is the set of infinite strings over X;
Notation: σ v σ′ means σ is an initial segment of σ′.
Notation: [σ] = {σ′ | σ v σ′}, e.g., [H] = {σ | H v σ}
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Learning

For A ∈ F , P(A | En[w]) = P(A ∩ En[w])
P(En[w])
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Convergence to Certainty

P(A | En[w])→

1 w ∈ A
0 w < A

for almost every w with regard to the prior probability P.

The set of w for which the above does not hold has measure 0.
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Convergence to certainty yields a first pass on merging of opinions.

Suppose that Ann’s degrees of beliefs are represented by P and Bob’s by Q, and
let Pn[A](w) = P(A | En[w]) and Qn[A](w) = Q(A | En[w]).

Then Pn[A] and Qn[A] both converge to zero or to one almost surely with respect
to the priors P and Q, respectively.
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Now, Ann believes with certainty that Pn[A] and Qn[A] will agree in the limit
whenever she assigns probability one to any set to which Bob assigns
probability one.

This result applies to particular events A. But it does not say anything about Ann’s
and Bob’s overall conditional probabilities.
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The Blackwell-Dubins theorem fills this gap.

D. Blackwell and L. Dubins. Merging of opinions with increasing information. The Annals of Mathe-
matical Statistics, 33, pp. 882 - 886.

I As Ann and Bob observe events and update by Bayesian conditioning, their
probabilities become close uniformly in all events.

I The Blackwell-Dubins theorem does not require that probabilities converge
(as in convergence to certainty): Ann’s and Bob’s conditional probabilities
may get closer even if they don’t converge.
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Variational Distance

Suppose that µ and ν are two measures over all events in F .

d(µ, ν) = sup
A∈F
|µ(A) − ν(A)|

P is said to merge to Q if for Q almost every w, d(Pn(w),Qn(w))→ 0 as n→ ∞.
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Absolute Continuity

Q is absolutely continuous relative to P (Q << P) if for all A ∈ F ,

Q(A) > 0 =⇒ P(A) > 0
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Blackwell-Dubins Theorem. If Q << P, then P merges to Q.

D. Blackwell and L. Dubins. Merging of opinions with increasing information. The Annals of Mathe-
matical Statistics, 33, pp. 882 - 886.
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I The Blackwell-Dubins Theorem assumes that the agents agree about which
events are certain.

I In the Blackwell-Dubins Theorem, the agents receive hard evidence and
update by conditioning. What about...

I learning from others?

I alternative update rules?

I ambiguous evidence?
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Deliberation

In an ideal situation, the discussion will elicit from each member of the group not
only their judgements, but also their reasons, arguments and evidence that back
up these judgements. Through discussion and debate, the group can sort through
all of the evidence and arguments leading to a more informed solution.

A common criticism of unstructured group discussion is that it enhances cognitive
errors rather than mitigates them.
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Deliberation - Problems

Bias against the minority: There is a tendency for groups to ignore isolated,
minority or lower-status members.

Anchoring effect : There is a tendency to rely too heavily, or “anchor”, a judgement
on one piece of information (for example, the first announced judgement, the
judgement of the most senior person in the group, or the judgement of the loudest
person in the group).

Common knowledge effect : Information held by all members of the group has
more influence on the final decision than information held by only a few members
of the group. So, if everybody in the group has some information, then it is more
valuable than the information of just a few members.
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Deliberation - Problems

Suppose that there are 10 people estimating a parameter whose true value is 40
with the following initial estimates:

1 2 3 4 5 6 7 8 9 10 Avg
15 18 20 22 30 45 50 55 60 61 37.6

16 25 21 23 31 41 41 40 41 45 32.4

M. Burgman, M. McBride, R. Ashton, A. Speirs-Bridge, L. Flander, B. Wintle, F. Fidler, L. Rumpff,
and C. Twardy. Expert Status and Performance. PLoS One 6(7), 2011.
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Belief Polarization

A. Bramson, P. Grim, D. J. Singer, W. J. Berger, G. Sack, S. Fisher, C. Flocken, and B. Holman
(2017). Understanding Polarization: Meanings, Measures, and Model Evaluation. Philosophy of
Science, 84 (1), 115?159.
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The term ‘polarization’ is sometimes used to refer to a static property (the
population is polarized) and sometimes a process (the population is polarizing)
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Spread: breadth of opinions: how far apart are the extremes?
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Dispersion: Statistical dispersion (or statistical variation). Any of various
measures of statistical dispersion might be used: mean difference, average
absolute deviation, standard deviation, coefficient of variation, or entropy.
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Coverage: A polarized group is thought of as one with little diversity of opinion,
one in which only narrow bands of the opinion space are occupied.
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Distinctness: The degree to which the group distributions can be separated.
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Learning from others

If Q reports that the probability of E is q, then Pnew(E) = P(E | Q(E) = q)

Shortcut: Pnew(E) = P(E)+Q(E)
2

C. Genest and M. J. Schervish (1985). Modeling expert judgments for bayesian updating. The
Annals of Statistics, 13(3), pgs. 1198?1212.

R. Bradley (2017). Learning from others: conditioning versus averaging. Theory and Decision.

J. W. Romeijn and O. Roy (2017). All agreed: Aumann meets DeGroot. Theory and Decision.
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The DeGroot/Lehrer Model

I There is a proposition about which several individuals disagree.
I Each individual i initially assigns some probability pi to the proposition.

I Each individual i assigns every individual j (including himself!) a non-zero
weight wi,j. The weights represent how reliable i believes j is relative to
others in the group.

I 0 ≤ wi,j ≤ 1
I For any individual, the weights sum to 1, i.e.,

∑
i,j wi,j = 1
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The DeGroot/Lehrer Model

I Time is divided into discrete stages.
I Let i’s degree of belief on stage t be represented by pi,t At stage t + 1,

individual i updates his belief to be a weighted-average of everyone’s beliefs
from stage t.

pi,t+1 =
∑

j

wi,jpj,t
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The DeGroot/Lehrer Model

Theorem. [DeGroot, 1974, Lehrer and Wagner, 1981] In the above model, all
individuals beliefs approach a common probability as the number of stages grows
larger.
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The DeGroot/Lehrer Model

I Why should individuals assign non-zero weight to others?
I Why should individuals repeat the averaging process?
I Why should the weights remain constant?
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Repeated Averaging

[R]efusing to shift from state 1 to state 2 is equivalent to assigning a
weight of 0 to other members of the group at this stage. This amounts to
the assumption that there is no chance that one is mistaken and no
chance that others in the group with whom one disagrees are correct. In
short, the only alternative to the iterated aggregation converging toward
a consensual probability assignment is individual dogmatism at some
stage.

asdf (Lehrer, 1976, pg. 331)
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Hegselmann and Krause

An individual’s peers change over time.

In the model, an individual considers only those whose opinions are sufficiently
similar to his or her own.

Hegselmann and Krause wanted to explain why groups might become polarized
and not reach a consensus.

R. Hegselmann and U. Krause (2002). Opinion dynamics and bounded confidence models, analy-
sis, and simulation. Journal of artificial societies and social simulation, 5 (3).
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The Hegselmann-Krause Model

Agent i’s belief is represented by a real number ri

I A subjective probability of a proposition
I A numerical estimate of some quantity

The truth is represented by a real-number T.
I 0 or 1 might represent the truth-value of some proposition.
I The actual value of some quantity

32 / 69



The Hegselmann-Krause Parameters

I Trust: A number ε (for all agents) between 0 and 1 that represents how
“close” other’s opinions must be to one’s own in order for one to take them
seriously.

I Truth Seeking: A number τ (for all agents) between 0 and 1 that represents
how strongly she is “attracted” to the truth.

I τ = 0 means that the agents only listens to their peers.
I τ = 1 means the agents have direct access to the truth.

I Time: Discrete stages 1, 2, 3, . . .
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The Hegselmann-Krause Model

Let bi,t be i’s belief at time t

Let Nρ(i, t) be those peers whose opinions differ from i’s by no more than ρ at
stage t:

Nρ(i, t) = {j | |bj,t − bi,t| < ρ}

Let N = |Nρ(i, t)|. Then,

bi,t+1 = τ · T + (1 − τ)
∑

j∈Nρ(i,t)

1
N
· bj,t
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N = 30 Rounds = 20 τ = 0 ρ = 0.05
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N = 30 Rounds = 20 τ = 0 ρ = 0.15

36 / 69



N = 30 Rounds = 20 τ = 0.1 ρ = 0.15
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N = 30 Rounds = 20 τ = 0 ρ = 0.25
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Epistemic Networks

K. Zollman, Kevin (2013). Network epistemology: Communication in epistemic communities. Phi-
losophy Compass, 8 (1), 15 - 27.

V. Bala and S. Goyal (1998). Learning from neighbors. Review of Economic Studies, 65 (3), 595 -
621.

B. Golub and M. O. Jackson (2010). Naive learning in social networks and the wisdom of crowds.
American Economic Journal: Microeconomics, pages 112 - 149.

(only a partial list...)
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w1 w2 w3 w4

P1 1/6 1/4 1/3 1/4
P2 1/2 1/12 1/4 1/6

Learn(E)
=⇒

w1 w2 w3 w4

PE
1 1/3 0 2/3 0

PE
2 2/3 0 1/3 0

E = {w1,w3}

A = {w1,w2}

Learning E makes the agents polarized about A:

P1(A | E) = 1/3 < 5/12 = P1(A) ≤ P2(A) = 7/12 < 2/3 = P2(A | E)
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T. Herron, T. Seidenfeld and L. Wasserman. Divisive conditioning: Further results on dilation.
Philosophy of Science 64 (3), pp. 411 - 444, 1997.

A. P. Pedersen and G. Wheeler. Dilation, disintegrations, and delayed decisions. In ISIPTA15: Pro-
ceedings of the 9th International Symposium on Imprecise Probability: Theories and Applications,
2015.
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G H G ∩ H A = (G ∩ H) ∪ (Gc ∩ Hc)
P1 0.1 0.5 P1(G) · P1(H) 0.5
P2 0.9 0.5 P1(G) · P1(H) 0.5

Learn H

Pi(A | H) =
Pi(((G ∩ H) ∪ (Gc ∩ Hc)) ∩ H)

Pi(H)
=

Pi(G ∩ H)
Pi(H)

= Pi(G)

G H G ∩ H A = (G ∩ H) ∪ (Gc ∩ Hc)
PH

1 0.1 1 P1(G) · P1(H) 0.1
PH

2 0.9 1 P1(G) · P1(H) 0.9
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S. Huttegger. Merging of Opinions and Probability Kinematics. Review of Symbolic Logic, 2015.
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Jeffrey Conditionalization

When an observation bears directly on the probabilities over a partition {Ei},
changing them from P(Ei) to Q(Ei), the new probability Q for any proposition H
should be

Q(H) =
∑

i

P(H | Ei)q(Ei)

Fact: If Q is obtained from p by Jeffrey Conditioning on the partition {E,E} with
Q(E) = 1, then Q(·) = P(· | E).
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Agents assumes to undergo learning experiences that yield a sequence P1,P2, . . .
of probability measures on (W,F1), (W,F2), . . ..

Each agent believes with probability one that she will revise her probabilities by
performing probability kinematics with p1, p2, . . .. Each probability measure Pn is
fully determined by attaching probability values to members of En.

Pn(A) =
∑
E∈En

P(A | E)pn(E)
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Suppose now that there are two prior probability measures P and Q which are
updated successively by probability kinematics on E1,E2, . . . using the
distributions p1, p2, . . . and q1, . . ., respectively.

Using the Jeffrey update rule this leads to the new probability measures Pn and
Qn on F for n ≥ 1.
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It is quite obvious that arbitrary choices of sequences p1, p2, . . . and q1, q2, . . . need
not lead to merging. But this is also true for conditioning.
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Recall that one requirement of the Blackwell-Dubins theorem is that agents
condition on the same factual evidence.

Thus, the important question is whether beliefs merge for probability kinematics
whenever pn and qn represent the same uncertain information.

But what does it mean to get the same uncertain evidence?

48 / 69



Hard Jeffrey Shift

A hard Jeffrey shift sets values for pn regardless of the prior probability Pn−1, and
so may destroy any information about the partition that was encoded in the prior.

In terms of hard Jeffrey shifts, having the same uncertain evidence at stage n
means that pn = qn.
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(M) Pn(F) = Pn−1(F) for all F ∈ Fn−1
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Theorem (Hutteger). Suppose that qn = pn, that the sequence Qn, n = 1, 2, . . . is
uniformly absolutely continuous relative to Q, and that Q << P. If condition (M)
holds, then d(Pn,Qn)→ 0 as n→ ∞.
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Soft Jeffrey Shifts

E1 = {E1,E2,E3,E4} and consider the learning experience given by:

(
1
5

: E1,
3
10

: E2,
1
2

: E3, 0 : En)

Consider instead:

I p1(E1) = 2 · P(E1);
I p1(E2) = 1

2 · P(E2);
I p1(E3) = 5 · P(E3); and
I p1(E4) = 0 · P(E4)
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I p1(E4) = 0 · P(E4)

52 / 69



If P(E1) = 1
10 , P(E2) = 3

5 , P(E3) = 1
10 and P(E4) = 1

5 , then probability kinematics will
lead to the same result whether or not it is a hard or “soft” Jeffrey shift.
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Do beliefs merge when agents have the same soft uncertain evidence?

Theorem 6.3 in Hutteger shows that this need not be the case.

If Ann and Bob start with different (but mutually absolutely continuous) prior
probabilities for infinite sequences of coin flips, and if both observe principle (M)
as well as undergo the same soft Jeffrey shifts, their posterior degrees of beliefs
may not get close to each other in the long run.
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“Our results lead to the conclusion that, even under otherwise favorable
circumstances, a soft kind of information allows individual rationality to be
consistent with sustained disagreement. I don’t think that this is a weakness of
the broadly Bayesian approach advocated in this essay. Merging of beliefs
happens when it should, i.e., under conditions which may, for example, hold for
certain carefully designed scientific investigations. But the claim of merging is not
a no-brainer that can be used across the board.”
adsf (Hutteger)
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Evidence open to interpretation

C. O’Connor, J. O. Weatherall (2017). Scientific Polarization. manuscript.

R. G. Fryer, P. Harms and M. Jackson. Updating Beliefs When Evidence is Open to Interpretation:
Implications for Bias and Polarization. manuscript, 2017.
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Lyme Wars

A decades long scientific debate about:

1. the question of whether Lyme can persist in patients after a short cycle of
antibiotics, and

2. the question of whether long term doses of antibiotics are successful in
improving the symptoms of Lyme patients.

I The values and goals are the same on both sides of the debate.
I They all have access to similar sorts of evidence — they see and treat

patients with Lyme and they read the same articles.
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Epistemic networks + Jeffry Update

Pf (H) = Pi(H | E) · Pf (E) + Pi(H | ¬E) · Pf (¬E)

1. Pf (E) = max({1 − d · m · (1 − Pi(E)), 0})
2. Pf (E) = 1 −min({1, d · m · (1 − Pi(E))})

I d is the absolute value of the difference between the agent’s credences
I m is a multiplier that captures how quickly agents become uncertain about the

evidence of their peers as their beliefs diverge
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Participants presented with one of two questions:
I Do you think the death penalty deters (stops) people from committing

murder?
I Do you think human activity is the cause of rising temperatures?

Respondents were asked to answer on a scale from -8 (I am certain that the
death penalty does NOT deter people from committing murder/I am certain that
human activity is NOT the cause of increasing temperatures) to 8 (I am certain
that the death penalty DOES deter people from committing murder/I am certain
that human activity IS the cause of increasing temperatures).
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Next, participants were presented short summaries. After each summary, they
were asked whether they thought the summary provided evidence for or against
the topic.

The summaries came from articles that provided a variety of conclusions and
would be easy to understand. After selecting articles, they redacted the abstracts
and introductions into a short summary of each article (keeping each summary at
more or less the same length and level of readability). An initial survey labeled the
summaries as PRO, CON or UNCLEAR.

Finally the participants were asked the original question again.
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I State: {A,B}
I Signals: {a, b, ab, ∅}

I a is a signal for state A
I b is a signal for state B
I ab is an ambiguous signal
I ∅ represents the lack of a signal

I λ0: prior probability
I q: probability of observing a signal
I p: probability that an agent receives signal a if the state is A and b if the state

is B
I π: probability that a signal “becomes” ambiguous.
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Theorem. A Bayesian-updating agent who forms beliefs conditional upon the full
sequence of signals has a posterior that converges to place probability 1 on the
correct state, almost surely.
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Proposition. Suppose that a nontrivial fraction of experiences are open to
interpretation so that π > p−1/2

p . Consider two interpretative agents 1 and 2 who
both use the maximum likelihood rule but have differing priors: agent 1’s prior is
that A is more likely (so 1 has a prior λ0 > 1/2) and agent 2’s prior is that B is
more likely (so 2 has a prior λ0 < 1/2).

Let the two agents see exactly the same sequence of signals. With a positive
probability that tends to 1 in π the two agents will end up polarized with 1’s
posterior tending to 1 and 2’s posterior tending to 0. With a positive probability
tending to 0 in π the two agents will end up with the same (possibly incorrect)
posterior tending to either 0 or 1
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Theorem. (Bayesian Consensus-or-Polarization Law). Let P and Q be any two
probabilities and suppose that P is absolutely continuous with respect to Q to
degree δ. Let M be the event that P and Q merge, and let L be the event that P
and Q polarize in the limit. If P shares an increasing and complete sequence of
evidence with Q, then P(M) = δ and P(L) = 1 − δ.

M. Nielsen and R. Stewart. Persistent Disagreement and Polarization in a Bayesian Setting.
manuscript, 2018.
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Concluding Remarks

X Monday Representing judgements; Introduction to judgement aggregation;
Aggregation paradoxes I

X Tuesday Aggregation paradoxes II, Axiomatic characterizations of
aggregation methods I

X Wednesday Axiomatic characterizations of probabilistic opinions

X Thursday Pooling imprecise probabilities; Distance-based
characterizations; Aumann’s agreeing to disagree theorem and related
results

X Friday Merging of probabilistic opinions (Blackwell-Dubins Theorem); Belief
polarization; Concluding remarks
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Some topics we missed

I Aggregating incoherent probabilities

R. Pettigrew. Aggregating incoherent agents who disagree. Synthese, 2017.

I Aggregating causal models

D. Alrajeh, H. Chockler, and J. Halpern. Combining experts’ causal judgments. Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2017.

I Diversity trumps ability theorem (Hong-Page Theorem)

L. Hong and S. E. Page. Groups of diverse problem solvers can outperform groups of high-ability
problem solvers. PNAS, 101(46), pp. 16385-16389, 2004.
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Thank You!
pacuit.org

epacuit@umd.edu
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