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Plan

v" Monday Representing judgements; Introduction to judgement aggregation;
Aggregation paradoxes |

v Tuesday Aggregation paradoxes I, Axiomatic characterizations of
aggregation methods |

Wednesday Axiomatic characterizations of aggregation methods I,
Distance-based characterizations

Thursday Opinion pooling; Merging of probabilistic opinions
(Blackwell-Dubins Theorem); Aumann’s agreeing to disagree theorem and
related results

Friday Belief polarization; Diversity trumps ability theorem (The Hong-Page
Theorem)



So far...

» Aggregating judgements: single event, multiple issues, logically connected
issues, probabilistic opinions, imprecise probabilities, causal models, ...

» May’s Theorem: axiomatic characterization of majority rule
» Condorcet Jury Theorem: epistemic analysis of majority rule

» Aggregation paradoxes: multiple election paradox, doctrinal paradox,
discursive dilemma, the problem with conjunction, the corroboration paradox
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Judgement Aggregation

U. Endriss. Judgment Aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procac-
cia, editors, Handbook of Computational Social Choice, Cambridge University Press, 2016.

C. List. The theory of judgment aggregation: An introductory review. Synthese 187(1): 179-207,
2012.

D. Grossi and G. Pigozzi. Judgement Aggregation: A Primer. Morgan & Claypool Publishers, 2014.
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Propositions: Let £ be a propositional language (with the usual Boolean
connectives).
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Propositions: Let £ be a propositional language (with the usual Boolean
connectives).

Issues: /1 C L

Agenda: A={p|pel}U{-p|pel}

Judgement set for i: J; C A that is consistent and complete:
» Consistency: Standard notion of consistency for propositional logic.
» Completeness: Forallp eI, ¢ € J; or ¢ € J;.
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Notation:
» 9 ={J|J C Ais consistent and complete }.
» IfJ; € L, we write Ji(p) = 1 when p € J; and J;(p) = O when p ¢ J..
» £ =(,...,Jn), thenlet]), ={i|p e Jj}
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Notation:
» 9 ={J|J C Ais consistent and complete }.

» IfJ; € L, we write Ji(p) = 1 when p € J; and J;(p) = O when p ¢ J..

» £ =(,...,Jn), thenlet]), ={i|p e Jj}

Aggregation function: F:9"— o)
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Properties

Universal Domain: The domain of F is the set of all possible profiles of
consistent and complete judgement sets.

Collective Rationality: F generates consistent and complete collective judgment
sets.

Anonymity: For all profiles (Jy,...,J,), F(J1,...,Ju) = F(Jx), - - -, Jzn) Where mis
a permutation of the voters.

Unanimity: For all profiles (Jy,...,J,) if p € J; foreachithenp € F(Jy,...,J,)



Responsiveness Conditions

Systematicity: Forany p,ge AandallJ = (Jy,...,J,) and J* = (J}, ..

domain of F,

if [forallie N, p e J;iff g € J7]
then[p e FQJ)iff g e F(J*) ].

., J3)inthe
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Responsiveness Conditions

Systematicity: Forany p,ge AandallJ = (Jy,...,J,) and J* = (J}, ..

domain of F,
if [forallie N, p e J;iff g € J7]
then[p e FQJ)iff g e F(J*) ].

» independence
» neutrality

Independence: ForanypeAandall J=(/,...,J,) and J* = (J},..

domain of F,

if[forallie N, p e J;iffp e J;]
then[p e FQ)) iffp e F(J¥) ].

., J3)inthe

.,J3)inthe
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Responsiveness Conditions

Monotonicity: For any p € X and all (/4, ..

domain of F,

Mooy and (. 7

if[p¢Ji,peJrandp e F(Ji,...,Ji,...J,)]

then [p € F(Jy,..

S

...,J,) inthe
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Responsiveness Conditions

Non-dictatorship: There exists no i € N such that, for any profile (/y,...,J,),
F(Jy,....Jw) = Ji
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Agenda Richness

Whether or not judgment aggregation gives rise to serious impossibility results
depends on how the propositions in the agenda are interconnected.

11/46



Agenda Richness

Whether or not judgment aggregation gives rise to serious impossibility results
depends on how the propositions in the agenda are interconnected.

Definition A set Y € £ is minimally inconsistent if it is inconsistent and every
proper subset X C Y is consistent.
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Agenda Richness

Definition An agenda X is minimally connected if
1. (non-simple) it has a minimal inconsistent subset Y C X with |Y| > 3

2. (even-number-negatable) it has a minimal inconsistent subset Y C X such
that
Y -ZU{-z|ze€ Z}is consistent

for some subset Z C Y of even size.
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Impossibility Theorems

Theorem (Dietrich and List, 2007) If (and only if) an agenda is non-simple and
even-number negatable, every aggregation rule satisfying universal domain,
collective rationality, systematicity and unanimity is a dictatorship (or inverse
dictatorship).
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Impossibility Theorems

Theorem (Dietrich and List, 2007) If (and only if) an agenda is non-simple and
even-number negatable, every aggregation rule satisfying universal domain,
collective rationality, systematicity and unanimity is a dictatorship (or inverse
dictatorship).

Theorem (Nehring and Puppe, 2002) If (and only if) an agenda is non-simple,
every aggregation rule satisfying universal domain, collective rationality,
systematicity unanimity, and monotonicity is a dictatorship.
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Characterization Result

p € X conditionally entails g € X, written p +* g provided there is a subset Y C X
consistent with each of p and —¢ such that {p} U Y I q.

Totally Blocked: X is totally blocked if for any p, g € X there exists py, .

.»Pk € X
such that

P=piE o pr=g¢q
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Characterization Result

Theorem (Dietrich and List, 2007, Dokow Holzman 2010) If (and only if) an
agenda is totally blocked and even-number negatable, every aggregation rule
satisfying universal domain, collective rationality, independence and unanimity is
a dictatorship.

Theorem (Nehring and Puppe, 2002, 2010) If (and only if) an agenda is totally
blocked, every aggregation rule satisfying universal domain, collective rationality,
independence unanimity, and monotonicity is a dictatorship.
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Proof Sketch, |

C C N is winning for p if for all profiles A = (Ay,...,A,),ifpeA;foralli e C and
p¢A;forallj¢ C,thenp e F(A)

C, = {C| C is winning for p}
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Proof Sketch, Il

1. (The agenda is totally blocked.) C, = C, for all p,q. Let C = C, for some p
(hence for all p).
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Proof Sketch, Il

1. (The agenda is totally blocked.) C, = C, for all p,q. Let C = C, for some p
(hence for all p).

2. (The agenda is even-number negatable.) If C e Cand C € (', then C’" € C.

3. (The agenda has a minimal consistent set with at least three elements.) If
C,C,eC, then CinG ecC.

4. N e C.
5. Forall C € N, either Ce Cor C € C.

6. Thereis ani € N such that {i} € C.

17/46



An employee-owned bakery must decide whether to buy a pizza oven (P) or a
fridge to freeze their outstanding Tiramisu (F). The pizza oven and the fridge
cannot be in the same room. So they also need to decide whether to rent an extra
room in the back (R). They all agree that they will rent the room if they decide to
buy both the pizza oven and the fridge: ((P A F) — R), but they are contemplating
renting the room regardless of the outcome of the vote on the appliances.

F. Cariani. Judgement Aggregation. Philosophy Compass, 6, 1, pgs. 22 - 32.
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P, F are reasons for R

-P,—F are not reasons for =R

=R, P are reasons for =F
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A. Rubinstein and P. Fishburn. Algebraic Aggregation Theory. Journal of Economic Theory, 38, pp.
63 - 77, 1986.
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<J19J2"-"Jn> = J
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X111 X120 Xim

X21 X220 Xom
H(Yla)’z,u-,)’m)

Xnl Xn2 *°° Xum
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X1 X1z o Xim

X21 X2ttt Xom
. Hf((xll’---,-xlm)a(-x219---9x2m),---,(xnl’---,xnm))

Xnl Xn2 *° Xum

Each x;; is an element of a field B.

Fori=1,...,n,x;, = (x;a,...,Xm) is an element of a vector space X C B” over B.

Aggregator: f : X" —» X
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T FGanee i), Gt s, - [CTERY)

Each x;; is an element of a field B.
Fori=1,...,n,x;, = (x;,...,Xm) is an element of a vector space X C B” over B.

Aggregator: f : X" —» X

21/46



X1 X1z o Xim

X211 X220 cct Xom
= f(x,x2, .0, %)

Xnl Xn2 °° Xum

Each x;; is an element of a field B.
Fori=1,...,n,x;, = (x;,...,x) is an element of a vector space X C B” over B.

Aggregator: f : X" —» X
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— (fl(xl’XZ’ s ’-xn)’fZ(xl,xz’ e ’xn)v LR ’fm(-xl’x27 s ’-xn))

Xnl Xn2 * Xum
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X11
X21

C1: (xyjy .oy X)) = (x;j, ... ,x,’zj) implies fj(xi, ..., x,) = fi(x],...

X1m

X2m

xnm

= (fi(xg, x2, ...

- (f](x'l,x'z,.. .

s Xn)s e e

» X

4
n

)s .-

f}'(Xl s X254t

-,Xn:) DO

s Xp)

2 Jm (X1, X2,
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ey X))
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C2: (xij,...,%y) = (b,...,b) implies fi(xy,...,x,) = b

X11 X1m
X21 X2m

: = (fl(xl’XZ’ L ’xn)7 L 77 e 7fm(x17x2’ e ,xn))
Xnl Xnm
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Fc = {feF| fsatisfies C1 and C2}
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Fe

Fa

{f € F | f satisfies C1 and C2}

{f € F| f satisfies C1 and fj(y + z) = fi(y) + fj(z) for all j < m
and column vectors for which y,z,y + z € X' }
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Fa

F

{f € F | f satisfies C1 and C2}

{f € F| f satisfies C1 and fj(y + z) = fi(y) + fj(z) for all j < m
and column vectors for which y,z,y + z € X' }

{f € F'| fthereexists 4,...,4, € Bsuchthat > 1, =1 and,
forall (xi,...,x,) € X", f(x1,...,X,) = X Aix;}
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Fe

Fa

F

{f € F | f satisfies C1 and C2}

{f € F| f satisfies C1 and fj(y + z) = fi(y) + fj(z) for all j < m
and column vectors for which y,z,y + z € X' }

{f € F| f there exists 44, ..
for all (xy,..

.,A, € Bsuchthat > 4; = 1 and,

LX) €XN (g, xn) = 20 A}

{f e F| fthereisani=1,...,n such that for all (x,...,x,) € X"

f(xl,. ..

,xn) =X }
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Theorem 1. Suppose m > 3 and X = {(x',...,x™) € B"| }; b’ = b} with b; # 0 for
allj <m. Then, F¢ C Fjy.
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Theorem 1. Suppose m > 3 and X = {(x',...,x™) € B"| }; b’ = b} with b; # 0 for
allj <m. Then, F¢ C Fjy.

Corollary 1. Suppose m > 3,
X ={(',...,.x") eR"| X¥;b’ =band ¥ > 0 for all j } with b and all b; positive.
Then F¢ C Fy.

Corollary 2. Give the hypothesis of Theorem 1, letf € Fc. Then f € Fsif Bis a
finite field, or if B = R and every f; is continuous or monotone.
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Theorem 1. Suppose m > 3 and X = {(x!,...,x™) € B"| 2 bjxf = b} with b; # 0 for
allj <m. Then, F¢ C Fjy.

v, zand y + z are n-element vectors in B"
b is the n-element vector with all components equal to b.
We must show f(y + z) = f(y) + f(2).

We show that fi(y + z) = f1(y) + fi(z) (similar proof for other components)
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M, = (y,0,1)
M, = (0, %y, t)
with £ = (b — byy)/bs

v

Foreachj=1,...,n, biyj+b0+b3ti=b
Foreachj=1,...,n, b0+ b22—;yj- +bst; = b
bifi(y) + b0 + byf (1) = b

bi0 + bafs (2y) + baf (1) = b

v

v

v

S0, bifi(y) = byf (Z—;)’)
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M, =(y+2z0,w)
M2 = (Z’ Z_;y’ W)
with w = (b — by (y + 2))/b3

v

Foreachj=1,...,n, bj(y+2);+b0+bsw;=>
Foreachj=1,...,n, bizj+byjty; + bsw; = b
bifi(y +2) + b0 + baf(w) = b

bifi(2) + bafs (2y) + baf(w) = b

v

v

v

S0, bifi(y +2) = bifi(2) + bafa (2£)
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> Bifiy) = bafa (2)
» bifi(y +2) = bif1(2) + bofs (Z—;)’)
» S0, bifi(y +2) = bifi(2) + bifi(y); hence, fi(y + 2) = fi(y) + f1(2)
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Suppose that n experts are asked to submit their probability p; = (pi1, ..., pin) Over
m > 3 mutually exclusive and exhaustive events.
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Suppose that n experts are asked to submit their probability p; = (pi1, ..., pin) Over
m > 3 mutually exclusive and exhaustive events.

The aggregation for event j depends only on the experts’ probabilities for event j

If the aggregator satisfies C1 and C2, then Corollary 1 with
X ={p',....p" | p >0and 3 p/ = 1} implies that the aggregator is additive.

If it is also continuous, then Corollary 2 implies that the aggregator is a weighted
average of the experts’ probability vectors.
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Aggregating Probabilities

C. Genest and J. V. Zidek. Combining probability distributions: A critique and an annotated bibliog-
raphy. Statistical Science,1(1), pp. 114 - 135, 1986.

F. Dietrich and C. List. Probabilistic opinion pooling. in Oxford Handbook of Probability and Philos-
ophy, 2016.

26/46



Probability

W is a set of states (or outcomes)

& is an algebra of events, or propositions: & C (W) that is closed under
(countable) union and complement. (For present purposes, let & = p(W).)

A probability measure is a function P : & — [0, 1] such that
» P(W) =1
» Finite Additivity: P(E, U E,) = P(E;) + P(E») (E; N E, = 0)
» Countable Additivity: P(J; E;) = >; P(E;) ({E;} are pairwise disjoint)
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Probability

Let (W, &) be an algebra of events
Let # be the set of probability functions on (W, &)

Probabilistic aggregation function: F : " — P
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Aggregation Functions

Linear pooling: forall A € &, f(P)(A) = w P{(A) + - - - w,P,(A), with 3, w; = 1
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Aggregation Functions
Linear pooling: forall A € &, f(P)(A) = w P{(A) + - - - w,P,(A), with 3, w; = 1

Geometric pooling: for all w e W, fP)w) =c-[P(w)]""---[P,(Ww)]"" with
diwi=landc=

Y ew[Pi(w’ )]wl [Pi(wr)]n

Multiplicative pooling: for allw € W, f(P)(w) = ¢ - [P1(W)] - - - [P,(w)] with
c= 1

ZwrewPiw)]-[Pi(w")]

Note that multiplicative pooling = geometric pooling with weights all equal to 1.
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Example, |
W = {wi,wy}

P= (Pl,Pz,P3) with Pl(Wl) = 09, Pz(Wl) = 01, P3(W1) =0.6
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Example, |
W= {WlaWZ}
P= (Pl,Pz,P3) with Pl(Wl) = 09, Pz(Wl) = 01, P3(W1) =0.6

JSin(P)wy) = % * 0.9 + % *0.1 + % * (0.6 = 0.5333

V0.9+0.1+0.6 _
f(‘qeom(P)(Wl) - V0.9+0.150.6+ ¥0.170.9:0.4 = 05337

_ 0.9+0.150.6 _
S ®YW1) = 55515 6+0.1:09%04 = 0-6

30/46



Example, Il

Gther probabilities are (0.1, 0.8)

10
—— linear
= geometric
= multiplicative
O i i e e e e B
06

Aggregate probability
o
-

o2

o
oo 02 04 a6 o8 10

Probability of agent 1

31/46



Example, Il

Cther probabilities are (0.1, 0.2, 0.8,0.9)

10
—— linear
- - = geometric
= multiplicative
08
z
= 08
o
2
g
a
3
g
o 04
7
o2
o
oo 02 04 a6 o8 10

Probability of agent 1
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Example, IV

Cther probabilities are (0.1, 0.8, 0.8, 0.8)

10
—— linear
= geometric
= multiplicative
00 S oo
z
= 08
o
2
g
a
3
g
o 04
7
o2
o
oo 02 04 a6 o8 10

Probability of agent 1
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Example, V

Cther probabilities are (0.1, 0.15, 0.9, 0.95)

—— linear
= geometric

= multiplicative
08

o
@

Aggregate probability
o
-

o2

o

oo 0z 04 06 o8 10
Probability of agent 1
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Linear Pooling

J. Aczel and C. Wagner. A characterization of weighted arithmetic means. SIAM Journal on Alge-
braic and Discrete Methods 1(3), pp. 259 - 260, 1980.

K. J. McConway. Marginalization and Linear Opinion Pools. Journal of the American Statistical
Association, 76(374), pp. 410 - 414, 1981.
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Eventwise Independence For each event A € &, there exists a function
Dy, :[0,1]" — [0, 1] such that for each P = (P4, ..., P,),

F(P)A) = Da(P1(A), ..., Py(A))
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Unanimity preservation For every profile P = (P, ..., P,) in the domain of the
aggregation function f, if all P; are identical, then f(P) is identical to them.
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Theorem (Aczel and Wagner 1980; McConway 1981) Suppose |W| > 2. The
linear pooling functions are the only eventwise-independent and
unanimity-preserving aggregation functions (with domain #").
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Conditioning and Linear Pooling
Suppose that there are two experts: N = {1, 2}.

Each expert has different information about a basket of fruit: W = {w;, w,, w3}
where

wy: there are precisely one apple and one banana in the basket
wy: there is precisely one pear in the basket
ws: there is precisely one apple in the basket

Pi(wy) = ¢, Pi(wp) = 5, Pi(w3) =

1 2 1
6’ 33 6
Py(wy) = 3, Px(w2) = 3, Po(w3) = 3
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Conditioning and Linear Pooling
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Conditioning and Linear Pooling

GibaLh  eihely
Pl(Wl)=l Pi(wy) = 3, Pi(w3) = ¢ 1 1
Py(wy) = §, Pa(wa) = 3, Pa(w3) = 3 Jiin
E = {Wz,W3} J/
(355 13)

L Learn E— (0, & o 5
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Conditioning and Linear Pooling

Pi(wy) = ¢, Pi(wy) =
Py(wy) = 1, Pa(wp) =

E = {wy, w3}

2
35
1
35

Pi(w3) =
Py(w3) =

1
6
1
3

Learn E
N N N ~
2 1 1 1 1 4 1 1 1
Y Y Y Y
flin ﬁm
3 3 3 13 7
(E’ 6° E) (Oa 20° %)

L Learn E —— (0, g,%
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Conditioning and Linear Pooling

Learn E
RIS 05h oLy
Pi(wi) = &, Pi(wy) = 3, Py(w3) = § Y - 3 z
Py(wy) = §, Pa(wa) = 3, Pa(w3) = 3 fin i
E = {wa, w3} 1 T
(355 13) 0,18 1)

L Learn E ——J(0X g, %)
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Conditioning and Linear Pooling
F. Dietrich. Bayesian Group Belief. Social Choice and Welfare, 35, pp. 595 - 626, 2010.
H. Leitgeb. Imaging all the people. Episteme, 14(4), pp. 463-479, 2017.

K. Steele. Testimony as Evidence: More Problems for Linear Pooling. Journal of Philosophical
Logic, 41, pp- 983 - 999, 2012.
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Independence and Linear Pooling

K. Lehrer and C. Wagner. Probability amalgamation and the independence issue: a reply to
Laddaga. Synthese 55, pp. 339 - 346, 1983.

C. Wagner. On the Formal Properties of Averaging as a Method of Aggregation. Synthese, 62, pp.
97 - 108, 1985.

C. Wagner. Aggregating subjective probabilities: some limitative theorems. Notre Dame Journal of
Formal Logic, 25(3), pp. 233 - 240, 1984.
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RI (Respect for Individual Attributions of Independence) For any propositions
E and F and profile P = (Py,...,P,), f PAENF) = P(E)P;(F)foralli=1,...,n,
the f(P)(E N F) = f(P)E) (P)(F)
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RI (Respect for Individual Attributions of Independence) For any propositions
E and F and profile P = (Py,...,P,), f PAENF) = P(E)P;(F)foralli=1,...,n,
the f(P)(E N F) = f(P)E) (P)(F)

Theorem (Wagner). Suppose that f : " — . Then, f satisfies
eventwise-independence, unanimity-preservation and respect for individual
attributions of independence if, and only if, f is a dictatorship.
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For all i, Pi({s1, 52} N {s2,53}) = Pi({s1, $2D)Pi({s2, 53})
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Geometric Pooling

Geometric pooling: for all w e W, fP)w) =c-[Pi(w)]""---[P,(w)]"" with
yiwi=landc =

o EW[P(W)] Lo [Py
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Geometric Pooling

Geometric pooling: for all w e W, fP)w) =c-[Pi(w)]""---[P,(w)]"" with
diwi=landc=

SorewlPiw )]“1 [Piw]n

» Unanimity-preserving.

» Unlike linear pooling, it is not eventwise independent.
» However, it does satisfy external Bayesianity.

A. Madansky. Externally Bayesian groups. Technical Report RM-4141- PR, RAND Corporation,
1964.
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Bayesian Externality

Pi(w1) = ¢, Pi(wy) = 3, Py(w3) =
Py(w1) = 3, Py(wy) = 3, Py(w3) =

E = {wy, w3}
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Bayesian Externality

Learn E
(558 G353 0,%,% (0,3, 3
Pi(wy) = ¢, Pi(wy) = 3, Py(w3) = ¢
Py(wy) = Pz(Wz) =1, Py(wy) =1 Joeom Joeom
E = {Wz,W3} . + 1 ‘ »
4°2° 4 303
LLearnE—) z 1
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Bayesian Externality

Likelihood function: A function L : W — R".

Given a function P: W — [0, 1], P : W — [0, 1] where for allw € W,

L _ P(w)L(w)
Prw) = 522 penion

External Bayesianity. For every opinion profile P = (P, ..., P,) and every
likelihood function L, pooling and updating are commutative: f(P)t = f(PL), where
PL = (PE,...,Ph).
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Bayesian Externality

Theorem (Genest). The geometric pooling functions are externally Bayesian and
unanimity-preserving.

G. Genest. A characterization theorem for externally Bayesian groups. Annals of Statistics 12(3),
pp. 1100-1105, 1984.

C. Genest, K. J. McConway and M. J. Schervish. Characterization of externally Bayesian pooling
operators. Annals of Statistics 14(2), pp. 487-501, 1986.

F. Dietrich. A Theory of Bayesian Groups. Nous, 2017.
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Theorem. Update by general imaging (with respect to fixed transfer function T')
is the unique update mechanism that commutes with linear pooling with respect to
arbitrary coefficients.

H. Leitgeb. Imaging all the people. Episteme, 14(4), pp. 463 - 479, 2017.

P. Gardenfors. Imaging and Conditionalization. The Journal of Philosophy, 79(12), pp. 747 - 760,
1982.
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