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Plan

X Day 1: Rational Choice Theory, Decision Theory

X Day 2: Expected Utility Theory, Allais Paradox

X Day 3: Evidential and Causal Decision Theory,

X Day 4: Introduction to (Epistemic) Game Theory, Common Knowledge,
Backward Induction

I Day 5: Epistemic Game Theory, Paradoxes of Interactive Epistemology,
Imperfect Recall
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Game Models

I A game is a partial description of a set (or sequence) of interdependent
(Bayesian) decision problems.

A game will not normally contain enough information to determine what the
players believe about each other.

I A model of a game is a completion of the partial specification of the Bayesian
decision problems and a representation of a particular play of the game.

I There are no special rules of rationality telling one what to do in the absence of
degrees of belief except: decide what you believe, and then maximize
(subjective) expected utility.
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

G: available actions, payoffs, structure of the decision problem
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

solution concepts are systematic descriptions of what players do
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The Epistemic Program in Game Theory

Game G
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The game model includes information states of the players
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

Restrict to information states satisfying some rationality condition
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

Project onto the strategy space
5 / 88



Models of Games

Suppose that G is a game.

I Outcomes of the game: S = Πi∈NSi

I A profile is a vector ~s ∈ S, specifying an action for each player
I Player i’s partial beliefs (or conjecture): Pi ∈ ∆(S−i)

∆(X) is the set of probabilities measures over X
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Models of Games, continued

G = 〈N, {Si, ui}i∈N〉 is a strategic (form of a) game.

I W is a set of possible worlds (possible outcomes of the game)

I s is a function s : W → Πi∈NSi, write si(w) for the ith component of s(w)

I If ~s ∈ Πi∈NSi, then [~s] = {w | s(w) = ~s}; if si ∈ Si, then [si] = {w | si(w) = si}; and if
X ⊆ S, [X] =

⋃
s∈X[s].

I ex ante beliefs: For each i ∈ N, let Pi ∈ ∆(W) (the set of probability measures on
W). Two assumptions:

I [s] is measurable for all strategy profiles s ∈ S
I Pi([si]) > 0 for all si ∈ Si
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ex interim beliefs: Pi,w ∈ ∆(S−i)

I ...given player i’s choice: Pi,w(·) = Pi(· | [si(w)])
I ...given all player i knows: Pi,w(·) = Pi(· | Ki), Ki ⊆ [si(w)]
I ...given all player i fully believes: Pi,w(·) = Pi(· | Bi), Bi ⊆ [si(w)]

Expected utility of strategy si ∈ Si: Given P ∈ ∆(S−i),

EUi,P(si) =
∑

s−i∈S−i

P(s−i)ui(si, s−i)
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An Example
Bob

A
nn

U L R
U 1,2 0,0 U

D 0,0 2,1 U

Ann’s choice is optimal
(given her information)
Bob’s choice is optimal
(given her information)
Ann considers it possible
Bob is irrational

1·PA(L)+0·PA(R) ≥ 0·PA(L)+2·PA(R)
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For any P ∈ ∆(S−i) and si ∈ Si, EUi,P(si) =
∑

s−i∈S−i
P(s−i)ui(si, s−i)

For any w ∈ W and si ∈ Si, EUi,w(si) =
∑

s−i∈S−i
Pi,w([s−i])ui(si, s−i)

Rati = {w | EUi,w(si(w)) ≥ EUi,w(si) for all si ∈ Si}

Each P ∈ ∆(W) is associated with PS ∈ ∆(S) as follows: for all s ∈ S, PS(s) = P([s])

A mixed strategy σ ∈ Πi∈N∆(Si), Pσ ∈ ∆(S), Pσ(s) = σ1(s1) · · ·σn(sn)
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Characterizing Nash Equilibria

Theorem (Aumann). σ is a Nash equilibrium of G iff there exists a model
MG = 〈W, {Pi}i∈N , s〉 such that:
I for all i ∈ N, Rati = W;
I for all i, j ∈ N, Pi = Pj; and
I for all i ∈ N, PS

i = Pσ.

11 / 88



Rationalizability

A best reply set (BRS) is a sequence (B1,B2, . . . ,Bn) ⊆ S = Πi∈NSi such that for all
i ∈ N, and all bi ∈ Bi, there exists µ−i ∈ ∆(B−i) such that si is a best response to µ−i:
I.e.,

bi = arg max
si∈Si

EUi,µ−i(si)

12 / 88



2

1

b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 5, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 0 0, -2 0, 0 10, -1

I (a2, b2) is the unique Nash equilibria, hence ({a2}, {b2}) is a BRS
I ({a1, a3}, {b1, b3}) is a BRS
I ({a1, a2, a3}, {b1, b2, b3}) is a full BRS
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Theorem (Bernheim; Pearce; Brandenburger and Dekel; . . . ). (B1,B2, . . . ,Bn) is a
BRS for G iff there exists a modelMG = 〈W, {Pi}i∈N , s〉 such that for all i ∈ N,
Rati = W and [B1 × · · · × Bn] = W.

14 / 88



Bob

A
nn

U L R

U 2,2 4,1 U

D 1,4 3,3 U

Game 1

Bob

A
nn

U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: D strictly dominates U and R strictly dominates L.

Game 2: U strictly dominates D, and after removing D, L strictly dominates R.

Theorem. The projection of any event where the players are rational and there is
common belief of rationality are strategies that survive iterative removal of strictly
dominated strategies (and, conversely...).
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D 1,0 0,1 U

Game 2

Game 1: U strictly dominates D and L strictly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly dominates R.

Theorem. In all models where the players are rational and there is common belief of
rationality, the players choose strategies that survive iterative removal of strictly
dominated strategies (and, conversely...).
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Let P ∈ ∆(X) be a probability measure, the support of P is
supp(P) = {x ∈ X | P(x) > 0}.

A probability measure P ∈ ∆(X) is said to be a full support probability measure on X
provided supp(P) = X.

16 / 88



Bob

A
nn

U L R

U 3,3 1,1 U

D 2,2 2,2 U

Is R rationalizable?

There is no full support probability such that R is a best response
Should Ann assign probability 0 to R or probability > 0 to R?
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Strategic Reasoning and Admissibility

“The argument for deletion of a weakly dominated strategy for player i is that he
contemplates the possibility that every strategy combination of his rivals occurs with
positive probability. However, this hypothesis clashes with the logic of iterated
deletion, which assumes, precisely, that eliminated strategies are not expected to
occur.”

Mas-Colell, Whinston and Green. Introduction to Microeconomics. 1995.
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A Puzzle

R. Cubitt and R. Sugden. Rationally Justifiable Play and the Theory of Non-cooperative games. Eco-
nomic Journal, 104, pgs. 798 - 803, 1994.

R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of common knowledge of
rationality. Manuscript, 2011.
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Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly dominates R.

Theorem. The projection of any event where the players are rational and there is
common belief of rationality are strategies that survive iterative removal of strictly
dominated strategies (and, conversely...).
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Game 1: U weakly dominates D and L weakly dominates R.

Game 2: But, now what is the reason for not playing D?

Theorem (Samuelson). There is no model of Game 2 satisfying common knowledge
of rationality (where rationality incorporates weak dominance). adfa sfas df adsf asd
fa

20 / 88



Common Knowledge of Admissibility

Bob
A

nn
T L R

T 1,1 1,0 U

B 1,0 0,1 U

T ,L T ,R T , {L,R}

B,L B,R B, {L,R}

{T ,B},L {T ,B},R {T ,B}, {L,R}

There is no model of this game with common knowledge of admissibility.
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B 1,0 0,1 U

T ,L T ,R T , {L,R}

B,L B,R B, {L,R}

{T ,B},L {T ,B},R {T ,B}, {L,R}

What is wrong with this model? asdf ad fa sdf a fsd asdf adsf adfs
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Common Knowledge of Admissibility

Bob
A

nn
T L R

T 1,1 1,0 U

B 1,0 0,1 U

T ,L T ,R T , {L,R}

B,L B,R B, {L,R}

{T ,B},L {T ,B},R {T ,B}, {L,R}

Privacy of Tie-Breaking/No Extraneous Beliefs: If a strategy is rational for an
opponent, then it cannot be “ruled out”.
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Both Including and Excluding a Strategy
Returning to the problem of weakly dominated strategies and rationalizability, one
solution is to assume that players consider some strategies infinitely more likely than
other strategies.

Bob

A
nn

U 1 [1]

U L R

U 3,3 1,1 U

D 2,2 2,2 U

L. Blume, A. Brandenburger, E. Dekel. Lexicographic probabilities and choice under uncertainty.
Econometrica, 59(1), pgs. 61 - 79, 1991.
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In a game modelMG = 〈W, {Pi}i∈N , s〉, different states represent different beliefs only
when the agent is doing something different.

Pi,w(E) = Pi(E | [si(w)])

To represent different explanations (i.e., beliefs) for the same strategy choice, we
would need a set of models {MG

1 ,M
G
2 , . . .}.
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In a game modelMG = 〈W, {Pi}i∈N , s〉, different states represent different beliefs only
when the agent is doing something different.

Pi,w(H) = Pi(H | Bi,w), Bi,w ⊆ [si(w)]

Two way to change beliefs: Pi(· | E ∩ Bi,w) and Pi(· | B′i,w) (conditioning on 0 events).
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Game Models

Richer models of a game: lexicographic probabilities, conditional probability
systems, non-standard probabilities, plausibility models, . . .
(type spaces)

“The aim in giving the general definition of a model is not to propose an original
explanatory hypothesis, or any explanatory hypothesis, for the behavior of players in
games, but only to provide a descriptive framework for the representation of
considerations that are relevant to such explanations, a framework that is as general
and as neutral as we can make it.” (pg. 35)

R. Stalnaker. Knowledge, Belief and Counterfactual Reasoning in Games. Economics and Philosophy,
12(1), pgs. 133 - 163, 1996.
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Rationalizing Observed Actions

After observing an (unexpected) move by some player, you could:

1. Change your belief about the player’s rationality, but maintain your beliefs about
the player’s passive beliefs.

2. Change your belief about the player’s passive beliefs, but maintain your belief in
the player’s rationality.

3. Conclude that the player perceives the game differently.
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What is forward induction reasoning?

Forward Induction Principle: a player should use all information she acquired
about her opponents’ past behavior in order to improve her prediction of their future
simultaneous and past (unobserved) behavior, relying on the assumption that they are
rational.

P. Battigalli. On Rationalizability in Extensive Games. Journal of Economic Theory, 74, pgs. 40 - 61,
1997.
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Backward versus Forward Induction

A

3, 0

Bob

Ann

l c r
u 2, 2 2, 1 0, 0
d 1, 1 1, 2 4, 0

A. Perea. Backward Induction versus Forward Induction Reasoning. Games, 1, pgs. 168 - 188, 2010.
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A. Knoks and EP. Interpreting Mistakes in Games: From Beliefs about Mistakes to Mistaken Beliefs.
manuscript, 2016.
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Rationalization versus Mistakes
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Allowing for mistakes

A
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2 0

in1
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out1

out2
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Interpreting Mistakes

How should Bob respond given evidence that Ann’s moves seem irrational?

1. Bob’s beliefs about Ann’s perception of the game are incorrect.

2. Bob’s assumption about Ann’s decision procedure is incorrect.

3. Bob’s belief about Ann’s assumptions about him is incorrect.

4. Ann’s moves are an attempt to influence Bob’s behavior in the game.

5. Ann simply failed to successfully implement her adopted strategy, i.e., Ann
made a “trembling hand mistake”.
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Backward and Forward Induction

I There are many epistemic characterizations (Aumann, Stalnaker, Battigalli &
Siniscalchi, Friedenberg & Siniscalchi, Perea, Baltag & Smets, Bonanno, van
Benthem,...)

I How should we compare the two “styles of reasoning” about games? (Heifetz &
Perea, Reny, Battigalli & Siniscalchi, Knoks & EP, Perea)

“When all is said and done, how should we play and what should we expect”.
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Issues

I The players’ conditional beliefs must be rich enough to employ the forward
induction principle.

I Do the players robustly believe the forward induction principle?
I Can players become more/less confident in the forward induction principle?

35 / 88



Is there a space of all possible interactive beliefs (about a game)?

Two questions

I What exactly does “all possible” mean?
(Complete, Canonical, Universal)

I Who cares?
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Who Cares?

A. Brandenburger and E. Dekel. Hierarchies of Beliefs and Common Knowledge. Journal of Economic
Theory (1993).

A. Heifetz and D. Samet. Knowledge Spaces with Arbitrarily High Rank. Games and Economic Behav-
ior (1998).

L. Moss and I. Viglizzo. Final coalgebras for functors on measurable spaces. Information and Compu-
tation 204(4), pgs. 610-636, 2006.

A. Friendenberg. When Do Type Structures Contain All Hierarchies of Beliefs?. Games and Economic
Behavior, Vol. 68, 2010.
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Who cares?

We think of a particular incomplete structure as giving the “context” in
which the game is played.

In line with Savage’s Small-Worlds idea in
decision theory [...], who the players are in the given game can be seen as a
shorthand for their experiences before the game. The players’ possible
characteristics — including their possible types — then reflect the prior
history or context. (Seen in this light, complete structures represent a
special “context-free” case, in which there has been no narrowing down of
types.) (pg. 319)

A. Brandenburger, A. Friedenberg, H. J. Keisler. Admissibility in Games. Econometrica (2008).
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Richness Conditions
Many epistemic characterization results make a richness assumption about the
epistemic models.

I What is a “good” epistemic characterization result?
I Players need “enough” conditional beliefs to “make sense of” observed behavior.
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Richness Conditions
Many epistemic characterization results make a richness assumption about the
epistemic models.

I What is a “good” epistemic characterization result?
I Players need “enough” conditional beliefs to “make sense of” observed behavior.

A. Brandenburger, H. J. Keisler, and A. Friedenberg. Admissibility in Games. Econometrica 76(2), pgs.
307-352., 2008.

A. Friedenberg and H. J. Keisler. Iterated Dominance Revisited. manuscript, 2010.

J. Halpern and R. Pass . A logical characterization of iterated admissibility. in Proceedings of Twelfth
Conference on Theoretical, pgs. 146-155, 2009.
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Doesn’t such talk of what Ann believes Bob believes about her, and so on, suggest
that some kind of self-reference arises in games, similar to the well-known examples
of self-reference in mathematical logic.

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in Games. Studia Logica
(2006).

EP. Understanding the Brandenburger-Keisler Paradox. Studia Logica, 86(3), pgs. 435 - 454, 2007.

S. Abramsky and J. Zvesper. From Lawvere to Brandenburger-Keisler: interactive forms of diagonal-
ization and self-reference. 2010.

C. Baskent. Some non-classical approaches to the BrandenburgerKeisler paradox . Logic Journal of
the IGPL, 23(4): 533-552, 2015.
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I Belief paradoxes: The knower paradox, Buriden-Burge sentences, Anti-expert
sentences

I The Brandenburger-Keisler (BK) paradox
I Logic of beliefs with definite descriptions for propositions
I Formalizing the paradoxes

41 / 88



The Knower Paradox

Let T be a theory in the language of arithmetic that can prove the Gödel-Carnap
fixed-point theorem and K a (perhaps complex) unary predicate in the language of T ,
such that, for every sentence ϕ in the language of T , T satisfies:

I Kϕ→ ϕ

I If T ` ϕ, then T ` Kϕ

Then, T is inconsistent.

D. Kaplan and R. Montague. A Paradox Regained. Notre Dame Journal of Formal Logic, 1, 1960, pp.
79-90.
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The Knower Paradox

P. Egré. The Knower Paradox in the Light of Provability Interpretations of Modal Logic. Journal of
Logic, Language and Information, 14, pgs. 13-48, 2005.
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The Knower Paradox
1. γ ↔ ¬Kpγq Gödel-Carnap Fixed-Point Lemma

1. γ ↔ ¬Kγ (Forget Gödel numbering)

2. γ → ¬Kγ Prop. Reasoning

3. Kγ → K¬Kγ Modal Reasoning

4. K¬Kγ → ¬Kγ T

5. Kγ → ¬Kγ Prop. Reasoning

6. ¬Kγ Prop. Reasoning

7. ¬Kγ → γ Prop. Reasoning

8. γ Prop. Reasoning

9. Kγ Nec

E
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1. γ ↔ ¬Kpγq Gödel-Carnap Fixed-Point Lemma

1. γ ↔ ¬Kγ (Forget Gödel numbering)
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5. Kγ → ¬Kγ Prop. Reasoning

6. ¬Kγ Prop. Reasoning

7. ¬Kγ → γ Prop. Reasoning

8. γ Prop. Reasoning

9. Kγ Nec

E
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Let T be a theory in the language of arithmetic that can prove the Gödel-Carnap
fixed-point theorem and B a (perhaps complex) unary predicate in the language of T ,
such that, for every sentence ϕ and ψ in the language of T , T satisfies:

I B¬Bϕ→ ¬Bϕ
I If T ` ϕ, then T ` Bϕ
I If T ` ϕ↔ ψ, then T ` Bϕ↔ Bψ

then T is inconsistent.

R. Thomason. A note on syntactical treatments of modality. Synthese 44, pgs. 391 - 395, 1980.

43 / 88
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Buridan-Burge: p↔ ¬Bap
Ba(p↔ ¬Bap)

Anti-Expert: p↔ Ba¬p
Ba(p↔ Ba¬p)
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Ann’s Possible Types Bob’s Possible Types

“Conjecture” about Bob“Conjecture” about Ann

Is there a space where every possible conjecture is
considered by some type?
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A (game-theoretic) type of a player summarizes everything the player knows
privately at the beginning of the game which could affect his beliefs about payoffs in
the game and about all other players’ types.

(Harsanyi argued that all uncertainty in a game can be equivalently modeled as
uncertainty about payoff functions.)
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Results

Language for i: A set Li ⊆ ℘(T−i).

Richness Property for Li: For all X ∈ Li, if X , ∅, then there is some type t ∈ Ti of
player i such that X describes t’s conjecture about −i.

Li can’t be the set of all non-empty subsets. (Brandenburger, 2003)
Li can’t be the set of sets that are definable in first-order logic. (Brandenburger
and Keisler, 2006)
Li can’t be the set of sets definable in a propositional modal logic with an
assumption modality. (Brandenburger and Keisler, 2006)
Li can be the set of compact subsets of a topological space (Mariotti, Meier and
Piccione, 2005)
· · ·
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The BK Paradox

Ann believes that Bob’s assumption is that Ann believes that Bob’s
assumption is wrong.

Does Ann believe that Bob’s assumption is wrong?

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in Games. Studia Logica
(2006).

46 / 88



The BK Paradox

Ann believes that the strongest proposition that Bob believes is that Ann
believes that the strongest proposition that Bob believes is false.

Does Ann believe that the strongest proposition that Bob believes is false?
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The BK Paradox

Ann believes that the strangest proposition that Bob believes is that Ann
believes that the strangest proposition that Bob believes is false.

Does Ann believe that the strangest proposition that Bob believes is false?
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The BK Paradox

Ann believes that the most interesting proposition that Bob believes is that
Ann believes that the most interesting proposition that Bob believes is false.

Does Ann believe that the most interesting proposition that Bob believes is false?

46 / 88



The BK Paradox

Goal: A modal logic of belief (for many agents) with formulas that may contain
definition descriptions of propositions (which may or may not denote).

46 / 88



Modal logics of belief...

〈W, {Ri}i∈A,V〉

States/possible worlds: W , ∅

Quasi-partitions: Ri ⊆ W ×W is serial, transitive and Euclidean

Belief operators: M,w |= Biϕ iff for all v, if w Ri v, thenM, v |= ϕ.

Belief operators: M,w |= Biϕ iff Ri(w) ⊆ [[ϕ]]M

{v | w Ri v} {v | M,w |= ϕ}
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Assumption
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The BK Paradox

Ann believes that Bob’s assumption is that Ann believes that Bob’s
assumption is wrong.

Does Ann believe that Bob’s assumption is wrong?

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in Games. Studia Logica
(2006).
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Concluding Remarks: Assumption
Two players: Ann (a) and Bob (b)

Standard model of beliefs: 〈W, {Ri}i∈A,V〉, where Ri is a quasi-partition, W , ∅ and V
a valuation function.

w |= Biϕ iff Ri(w) ⊆ [[ϕ]]M = {w | M,w |= ϕ}

Assumption operator �iϕ: “i’s assumption is ϕ”.

(window modality, “all the agent knows”)

w |= �iϕ iff Ri(w) = [[ϕ]]M = {w | M,w |= ϕ}
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Concluding Remarks: Assumption

Ann believes that Bob’s assumption is that Ann believes that Bob’s
assumption is wrong.

2a �b D ∧3a> =⇒ D↔ ¬D

50 / 88



Definite descriptions of propositions
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Suppose that At is a set of atomic propositions,A is a set of agents, and Lab is a set
of “labels” for propositions. The language L:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Biϕ | γ is ϕ

Bdicto
i T(γ) | Bdicto

i F(γ) | Bre
i T(γ) | Bre

i F(γ)

where p ∈ At, i ∈ A, and γ ∈ Lab.

I Biϕ: “agent i believes that ϕ”
I γ is ϕ: “the definite description γ denotes the proposition expressed by ϕ” (or

“the γ-proposition is ϕ”).
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Models

M = 〈W, {Ri}i∈A, {Nγ}γ∈Lab,V〉

I W is a nonempty set (the set of worlds)
I for each i ∈ A, Ri is a serial, transitive and Euclidean relation on W (a

quasi-partition)
I for each γ ∈ Lab, Nγ : W d ℘(W) is a partial function (the denotation function)
I V : At→ ℘(W) (the valuation function)
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The truth of a formula ϕ ∈ L at a world w in a modelM (notation: M,w |= ϕ), and
the set [[ϕ]]M of worlds at which ϕ is true inM, is defined by recursion as follows:

I M,w |= p iff w ∈ V(p), where p ∈ At

I M,w |= ¬ϕ iffM,w 6|= ϕ

I M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ

I M,w |= Biϕ iff Ri(w) ⊆ [[ϕ]]M

I M,w |= γ is ϕ iff Dγ(w) is defined and Dγ(w) = [[ϕ]]M
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The truth of a formula ϕ ∈ L at a world w in a modelM (notation: M,w |= ϕ), and
the set [[ϕ]]M of worlds at which ϕ is true inM, is defined by recursion as follows:

I M,w |= Bre
i (T(γ)) iff Dγ(w) is defined and Ri(w) ⊆ Nγ(w)

I M,w |= Bre
i (F(γ)) iff Dγ(w) is defined and Ri(w) ⊆ W \ Nγ(w)

I M,w |= Bdicto
i (T(γ)) iff for all v ∈ Ri(w), Nγ(v) is defined and Ri(w) ⊆ Nγ(v)

I M,w |= Bdicto
i (F(γ)) iff for all v ∈ Ri(w), Nγ(v) is defined and Ri(w) ⊆ W \ Nγ(v).
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Ra(w)
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w Baϕ

Ra(w)

[[ϕ]]M

w

53 / 88



Ba(T(γ)), Ba(F(γ))Ba(γ)

Ba(γ is ϕ)

Ba(γ)

53 / 88



Ba(γ is ϕ)

Ba(γ) Ba(T(γ)), Ba(F(γ))
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w w

w Bre
a (T(γ))

Ra(w)
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w w

w Bdicto
a (T(γ))

Ra(w)

Dγ(v)
Dγ(v′)

Dγ(v′′) · · ·

w

53 / 88



Suppose that At is a set of atomic propositions,A is a set of agents, and Lab is a set
of labels for propositions. The language L:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Biϕ | γ is ϕ

Bdicto
i T(γ) | Bdicto

i F(γ) | Bre
i T(γ) | Bre

i F(γ)

where p ∈ At, i ∈ A, and γ ∈ Lab.

I de re belief: Bre
i T(γ) (Bre

i F(γ)): “i believes of the proposition denoted by γ that it
is correct (wrong).”

I de dicto belief: Bdicto
i T(γ) (Bdicto

i F(γ)): “i believes that γ is correct (wrong),
whatever proposition γ turns out to denote.”

54 / 88



Suppose that At is a set of atomic propositions,A is a set of agents, and Lab is a set
of labels for propositions. The language L:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Biϕ | γ is ϕ

Bdicto
i T(γ) | Bdicto

i F(γ) | Bre
i T(γ) | Bre

i F(γ)

where p ∈ At, i ∈ A, and γ ∈ Lab.

I T(γ)↔ γ and F(γ)↔ ¬γ are not formulas (γ may not denote).
I T(γ) and F(γ) are always proceeded by expressions Bre

i or Bdicto
i .

I γ is ¬γ is not well-formed. (no liar-sentences)
I γ is ¬Bre

i T(γ) is a well-formed formula. (there is some self-reference)
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The truth of a formula ϕ ∈ L at a world w in a modelM (notation: M,w |= ϕ), and
the set [[ϕ]]M of worlds at which ϕ is true inM, is defined by recursion as follows:

I M,w |= Bre
i (T(γ)) iff Dγ(w) is defined and Ri(w) ⊆ Nγ(w)

I M,w |= Bre
i (F(γ)) iff Dγ(w) is defined and Ri(w) ⊆ W \ Nγ(w)

I M,w |= Bdicto
i (T(γ)) iff for all v ∈ Ri(w), Nγ(v) is defined and Ri(w) ⊆ Nγ(v)

I M,w |= Bdicto
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The BK Paradox

Ann believes that the strongest proposition that Bob believes is that Ann
believes that the strongest proposition that Bob believes is wrong.

Does Ann believe that the strongest proposition that Bob believes is wrong?
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The BK Paradox

Ann believes that the γ-proposition is that Ann believes that the
γ-proposition is wrong.

I Ba(γ is Bdicto
a F(γ))

I Ba(γ is Bre
a F(γ))
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Logic
Individual beliefs are consistent and deductively closed.

(D) Biϕ→ ¬Bi¬ϕ

(K) Bi(ϕ→ ψ)→ (Biϕ→ Biψ)

(Nec) if ϕ is a theorem, so is Biϕ

Everyone is correct about their own beliefs.

(CorP) BiBiϕ→ Biϕ

(CorN) Bi¬Biϕ→ ¬Biϕ

Everyone is perfectly introspective.

(PI) Biϕ→ BiBiϕ

(NI) ¬Biϕ→ Bi¬Biϕ
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Logic

Note that BiBre
i T(γ)→ Bre

i T(γ) is not an instance of (CorP). Similarly,
Bre

i T(γ)→ BiBre
i T(γ) is not an instance of (PI).

(CorP) Biχ→ χ

(CorN) Bi¬χ→ ¬χ

For each χ ∈ {Bdicto
i T(γ),Bdicto

i F(γ),Bre
i T(γ),Bre

i F(γ)}

(IP)orr χ→ Biχ

(IN)orr ¬χ→ Bi¬χ

For each χ ∈ {Bdicto
i T(γ),Bdicto

i F(γ),Bre
i T(γ),Bre

i F(γ)}
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Logic

Substitution axioms:

(S1dicto) Bi(γ is ϕ)→ (Bdicto
i T(γ)↔ Biϕ)

(S2dicto) Bi(γ is ϕ)→ (Bdicto
i F(γ)↔ Bi¬ϕ)

(S1re) (γ is ϕ)→ (Bre
i T(γ)↔ Biϕ)

(S2re) (γ is ϕ)→ (Bre
i F(γ)↔ Bi¬ϕ)
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Proposition The set {γ is ¬Bre
i T(γ)} is inconsistent in any propositional modal logic

containing S1re, CorN and IN .

1. γ is ¬Bre
i T(γ) (assumption)

2. γ is ¬Bre
i T(γ)→ ((Bre

i T(γ)↔ Bi¬Bre
i T(γ)) (S1re)

3. Bre
i T(γ)↔ Bi(¬Bre

i T(γ)) (Prop Reas, 1, 2)

4. Bi¬Bre
i T(γ)→ ¬Bre

i T(γ) (CorN)

5. Bre
i T(γ)→ ¬Bre

i T(γ) (Prop Reas, 3, 4)

6. ¬Bre
i T(γ) (Prop Reas, 5)

7. ¬Bre
i T(γ)→ Bi¬Bre

i T(γ) (IN)

8. Bi¬Bre
i T(γ) (Prop Reas, 6, 7)

9. Bre
i C(γ) (Prop Reas, 8, 3)

10. Contradiction (6, 9)
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i C(γ) (Prop Reas, 8, 3)

10. Contradiction (6, 9)
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Proposition The set {γ is Bre
i F(γ)} is inconsistent in any propositional modal logic

containing S2re, Cor and I.

This does not imply the BK Paradox: γ is Bre
i F(γ) and Bi(γ is Bre

i F(γ)) are logically
independent. What about Bi(γ is Bdicto

i F(γ))?

59 / 88



Proposition The set {γ is Bre
i F(γ)} is inconsistent in any propositional modal logic

containing S2re, Cor and I.

This does not imply the BK Paradox: γ is Bre
i F(γ) and Bi(γ is Bre

i F(γ)) are logically
independent. What about Bi(γ is Bdicto

i F(γ))?

59 / 88



The BK Paradox

Ann believes that the strongest proposition that Bob believes is that Ann
believes that the strongest proposition that Bob believes is false.

Does Ann believe that the strongest proposition that Bob believes is false?
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The BK Paradox

Ann believes that the γ-proposition is that Ann believes that the
γ-proposition is false.

Claim 1. {Ba(γ is Bdicto
a F(γ))} is inconsistent in any modal logic containing K, Nec,

Cor, I, S2dicto

Claim 2. {Ba(γ is Bre
a F(γ))} is inconsistent in any modal logic containing K, Nec,

Cor, I, S2re
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The BK Paradox

Proposition. {Ba(γ is Bdicto
a F(γ))} is inconsistent in any modal logic containing K,

Nec, CorN , IN , S2dicto.
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The BK Paradox
1. Bi(γ is Bdicto

i F(γ)) (assumption)

2. Bi(γ is Bdicto
i F(γ))→

(Bdicto
i F(γ)↔ Bi(¬Bdicto

i F(γ))) (S2dicto)

3. Bdicto
i F(γ)↔ Bi(¬Bdicto

i F(γ)) (MP, 1, 2)

4. Bi(¬Bdicto
i F(γ))→ ¬Bdicto

i F(γ) (CorN)

5. Bdicto
i F(γ)→ ¬Bdicto

i F(γ) (Prop Reas, 3, 4)

6. ¬Bdicto
i F(γ) (Prop Reas, 7)

7. ¬Bdicto
i F(γ)→ Bi¬Bdicto

i F(γ) (IN)

8. Bi¬Bdicto
i F(γ) (MP, 6, 7)

9. Bdicto
i F(γ) (MP, 3, 8)

10. Contradiction (6, 9)
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The BK Paradox

Proposition. {Ba(γ is Bre
a F(γ))} is inconsistent in any modal logic containing K, Nec,

Cor, I, S2re.

1. Bi(γ is Bre
i F(γ)) (assumption)

2. (γ is Bre
i F(γ))→

(Bre
i F(γ)↔ Bi(¬Bre

i F(γ))) (S2re)

3. Bi(γ is Bre
i F(γ))→

Bi(Bre
i F(γ)↔ Bi(¬Bre

i F(γ))) (Mon, 2)
...

22. Contradiction
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Taking Stock

I Propositional modal logic with definition descriptions for propositions.
I On this analysis, the BK Paradox is not a paradox of interactive beliefs.
I The proof of the BK Paradox is similar to the proof of the Knower Paradox.
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Interpretation shifts

〈W, {Ri}i∈A,V〉

Propositional Valuation: V : At→ ℘(W)

Ambiguity/Propositional Control: V : At ×A → ℘(W)

i and j disagree about the interpretation of p when V(p, i) , V(p, j)

Interpretation shifts
I Actions: [p := ϕ]ψ
I Becoming aware (W becomes more “fine-grained”)
I V : At ×W → ℘(W)
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Related Models

I Dynamic logics with factual change [p := ϕ]ψ
I Logics of beliefs with ambiguity (or propositional control)
I Second-order propositional modal logic: Ba∃pBb¬p, ∃pBaBb¬p
I FOIL (First-order intensional logic): “The king of Sweden could be taller than

he is.”
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Knower BB/AE BK

γ is ¬BiT(γ) p↔ ¬Bip Bi(γ is ¬BiT(γ))

γ is BiF(γ) p↔ Bi¬p Bi(γ is BiF(γ))
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γ is BiF(γ) E Bi(γ is BiF(γ)) E

p↔ Bi¬p Bi(p↔ Bi¬p) E
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Are definition descriptions essential?

Ba∃p(Bbp ∧ ∀q(Bbq ∧2(p→ q))∧
(p↔ Ba∃r(Bbr ∧ ∀q(Bbq ∧2(r → q)) ∧ ¬r)
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Are definition descriptions essential? (No)

Ba∃p(Bbp ∧ ∀q(Bbq ∧2(p→ q))∧
(p↔ Ba∃r(Bbr ∧ ∀q(Bbq ∧2(r → q)) ∧ ¬r)
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Concluding Remarks

X Paradoxes of expected utility: St. Petersberg paradox, Pasadena game, The
Two-envelop paradox

X Allais and Ellsberg paradox
X Newcomb’s paradox and the psychopath button problem
X Puzzling games: the Prisoner’s Dilemma and the Traveler’s Dilemma
I The absent-minded driver problem
I Rubinstein’s email game and the general’s problem
X Backward induction and common knowledge of rationality
X The Brandenburger-Keisler paradox
I Framing in decision and game theory: language-dependent decisions and games,

coordination problems and the theory of focal points.
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Concluding Remarks

X Paradoxes of expected utility: St. Petersberg paradox, Pasadena game, The
Two-envelop paradox

X Allais and Ellsberg paradox
X Newcomb’s paradox and the psychopath button problem
X Puzzling games: the Prisoner’s Dilemma and the Traveler’s Dilemma
I The absent-minded driver problem
I Rubinstein’s email game and the general’s problem
X Backward induction and common knowledge of rationality
X The Brandenburger-Keisler paradox
X Introduced some new people to one of the best scenes in modern movie

history!
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The Absent-Minded Driver
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Games of Imperfect Information

o1 o2 o1 o2

d1 d2

d0
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The Absent-Minded Driver

An individual is sitting late at night in a bar planning his midnight trip home. In order
to get home he has to take the highway and get off at the second exit.

Turning at the
first exit leads into a disastrous area (payoff 0). Turning at the second exit yields the
highest reward (payoff 4). If he continues beyond the second exit, he cannot go back
and at the end of the highway he will find a motel where he can spend the night
(payoff 1).

72 / 88



The Absent-Minded Driver

An individual is sitting late at night in a bar planning his midnight trip home. In order
to get home he has to take the highway and get off at the second exit. Turning at the
first exit leads into a disastrous area (payoff 0). Turning at the second exit yields the
highest reward (payoff 4).

If he continues beyond the second exit, he cannot go back
and at the end of the highway he will find a motel where he can spend the night
(payoff 1).

72 / 88



The Absent-Minded Driver

An individual is sitting late at night in a bar planning his midnight trip home. In order
to get home he has to take the highway and get off at the second exit. Turning at the
first exit leads into a disastrous area (payoff 0). Turning at the second exit yields the
highest reward (payoff 4). If he continues beyond the second exit, he cannot go back
and at the end of the highway he will find a motel where he can spend the night
(payoff 1).

72 / 88



The Absent-Minded Driver

The driver is absentminded and is aware of this fact. At an intersection, he cannot tell
whether it is the first or the second intersection and he cannot remember how many he
has passed (one can make the situation more realistic by referring to the 17th
intersection).

While sitting at the bar, all he can do is to decide whether or not to exit
at an intersection. (pg. 7)

M. Piccione and A. Rubinstein. On the Interpretation of Decision Problems with Imperfect Recall.
Games and Econ Behavior, 20, pgs. 3- 24, 1997.
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Planning stage: While planning his trip home at the bar, the decision maker is faced
with a choice between “Continue; Continue” and “Exit”. Since he cannot distinguish
between the two intersections, he cannot plan to “Exit” at the second intersection (he
must plan the same behavior at both X and Y). Since “Exit” will lead to the worst
outcome (with a payoff of 0), the optimal strategy is “Continue; Continue” with a
guaranteed payoff of 1.
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Action stage: When arriving at an intersection, the decision maker is faced with a
local choice of either “Exit” or “Continue” (possibly followed by another decision).
Now the decision maker knows that since he committed to the plan of choosing
“Continue” at each intersection, it is possible that he is at the second intersection.
Indeed, the decision maker concludes that he is at the first intersection with
probability 1/2. But then, his expected payoff for “Exit” is 2, which is greater than the
payoff guaranteed by following the strategy he previously committed to. Thus, he
chooses to “Exit”.
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Have we captured strategic reasoning?
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Strategic reasoning vs. Bayesian rationality

I Normal form vs. Extensive Form: Should the analysis take place on the tree or
the matrix? (plans vs. strategies)

I There is an important different between what I would believe given E is true and
what I believe after learning E

I What should I assume about my opponents?
I What is the role of higher-order beliefs? (Common knowledge, common belief)
I Framing issues/language in game theory
I · · ·
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“...[W]e cannot expect game and economic theory to be descriptive in the same sense
that physics or astronomy are. Rationality is only one of several factors affecting
human behavior; no theory based on this one factor alone can be expected to yield
reliable predictions.

In fact, I find it somewhat surprising that our disciplines have any relation at all to
real behavior. (I hope that most readers will agree that there is indeed such a relation,
that we do gain some insight into the behavior of Homo sapiens by studying Homo
rationalis.)”

R. Aumann. What is game theory trying to accomplish?. Frontiers of Economics, 1985.
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Can a player assign subjective probabilities to strategies under the control of other
players who have their own objectives?

M. Mariotti. Is Bayesian Rationality Compatible with Strategic Rationality?. The Economic Journal,
105: 432, pgs. 1099 - 1109, 1995.

M. Mariotti. Decisions in games: why there should be a special exemption from Bayesian rationality.
Journal of Economic Methodology, 4: 1, pgs. 43 - 60, 1997.

P. Hammond. Expected Utility in Non-Cooperative Game Theory. in Handbook of Utility Theory, 2004.
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Games as consequences: “A decision maker prefers to be player i in game G1 to being
player j in game G2”
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Can the decision problem be separated from the game situation?

Are strategies merely neutral access routes to consequences?

E. McClennen. Rational choice in the context of ideal games. in Knowledge, Belief and Strategic
Interaction, pgs. 47-60, 1992.
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utility must be measured in the context of the game itself.

I. Gilboa and D. Schmeidler. A Derivation of Expected Utility Maximization in the Context of a Game.
Games and Economic Behavior, 44, pgs. 184 - 194, 2003.
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The following two outcomes are not equivalent:

I “I get $90”
I “I get $90 and choose to leave $10 to my opponent”

The following two outcomes are not equivalent:
I “I get $10 and player one gets $90, and this was decided by Nature”
I “I get $10, player one gets $90 and this was decided by Player one”.
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Players need two theories:

1. A theory to guide their decisions.
2. A theory to predict the behavior of their opponents.

“Game theory is decision theory about special decision makers, namely about
decision makers who theorize decision-theoretically about the other persons figuring
in their decision situations.” (Spohn, “How to make sense of Game Theory”)
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“Rationality has a clear interpretation in individual decision making, but it does not
transfer comfortably to interactive decisions, because interactive decision makers
cannot maximize expected utility without strong assumptions about how the other
participant(s) will behave. In game theory, common knowledge and rationality
assumptions have therefore been introduced, but under these assumptions, rationality
does not appear to be characteristic of social interaction in general.” (pg. 152)

A. Colman. Cooperation, psychological game theory, and limitations of rationality in social interaction.
Behavioral and Brain Sciences, 26, pgs. 139 - 198, 2003.
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Thank you!
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