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Plan

X Day 1: Rational Choice Theory, Decision Theory

I Day 2: Expected Utility Theory, Evidential and Causal Decision Theory

I Day 3: Decisions over Time, Introduction to Game Theory

I Day 4: Common Knowledge, Backward Induction and Epistemic Game Theory

I Day 5: Paradoxes of Interactive Epistemology, Framing in Games and Decisions
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Brief review from yesterday...
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Decision Problems

A

B

w1 w2 · · · wn−1 wn

max({u(A(wi)) −max({u(Ai(wi)) | Ai ∈ Act})
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Decision Problems

A

B

w1 w2 · · · wn−1 wn

An act is a function F : W → O

5 / 46



Making an omelet

States: {the sixth egg is good, the sixth egg is rotten}

Consequences: { six-egg omelet, no omelet and five good eggs destroyed, six-egg
omelet and a cup to wash....}

Acts: { break egg into bowl, break egg into a cup, throw egg away}
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Making an omelet

Good egg (s1) Bad egg (s2)

Break into a bowl
(A1)

six egg omelet (o1)
no omelet and five good eggs

destroyed (o2)

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3)

five egg omelet and a cup to
wash (o4)

Throw away (A3)
five egg omelet and one good

egg destroyed (o5)
five egg omelet (o6)

o1 � o6 � o3 � o4 � o5 � o2
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Making an omelet

Good egg (s1) Bad egg (s2)

Break into a bowl
(A1)

six egg omelet (o1)
no omelet and five good eggs

destroyed (o2)

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3)

five egg omelet and a cup to
wash (o4)

Throw away (A3)
five egg omelet and one good

egg destroyed (o5)
five egg omelet (o6)

o1 � o6 � o3 � o4 � o5 � o2 How should A1, A2 and A3 be ranked?
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Subjective Expected Utility

Probability: Suppose that W = {w1, . . . ,wn} is a finite set of states. A probability
function on W is a function P : W → [0, 1] where

∑
w∈W P(w) = 1 (i.e.,

P(w1) + P(w2) + · · · + P(wn) = 1).

Suppose that A is an act for a set of outcomes O (i.e., A : W → O). The expected
utility of A is: ∑

w∈W

P(w) ∗ u(A(w))
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Making an omelet

Good egg (s1) Bad egg (s2)

Break into a bowl
(A1)

six egg omelet (o1)
no omelet and five good eggs

destroyed (o2)

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3)

five egg omelet and a cup to
wash (o4)

Throw away (A3)
five egg omelet and one good

egg destroyed (o5)
five egg omelet (o6)

o1 � o6 � o3 � o4 � o5 � o2

u(o1) = 6, u(o6) = 5, u(o3) = 4, u(o4) = 3, u(o5) = 2, u(o2) = 1
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Making an omelet

Good egg (s1) 0.8 Bad egg (s2) 0.2

Break into a bowl
(A1)

six egg omelet (o1) 6 no omelet and five good eggs
destroyed (o2) 1

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3) 4

five egg omelet and a cup to
wash (o4) 3

Throw away (A3)
five egg omelet and one good

egg destroyed (o5) 2 five egg omelet (o6) 5

o1 � o6 � o3 � o4 � o5 � o2 P(s1) = 0.8,P(s2) = 0.2

u(o1) = 6, u(o6) = 5, u(o3) = 4, u(o4) = 3, u(o5) = 2, u(o2) = 1

9 / 46



Making an omelet

Good egg (s1) 0.8 Bad egg (s2) 0.2

Break into a bowl
(A1)

six egg omelet (o1) 6 no omelet and five good eggs
destroyed (o2) 1

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3) 4

five egg omelet and a cup to
wash (o4) 3

Throw away (A3)
five egg omelet and one good

egg destroyed (o5) 2 five egg omelet (o6) 5

o1 � o6 � o3 � o4 � o5 � o2 P(s1) = 0.8,P(s2) = 0.2

EU(A1) = P(s1) ∗ u(A1(s1)) + P(s2) ∗ u(A1(s2)) = 0.8 ∗ 6 + 0.2 ∗ 1 = 5.0
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Making an omelet

Good egg (s1) 0.8 Bad egg (s2) 0.2

Break into a bowl
(A1)

six egg omelet (o1) 6 no omelet and five good eggs
destroyed (o2) 1

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3) 4

five egg omelet and a cup to
wash (o4) 3

Throw away (A3)
five egg omelet and one good

egg destroyed (o5) 2 five egg omelet (o6) 5

o1 � o6 � o3 � o4 � o5 � o2 P(s1) = 0.8,P(s2) = 0.2

EU(A2) = P(s1) ∗ u(A2(s1)) + P(s2) ∗ u(A2(s2)) = 0.8 ∗ 4 + 0.2 ∗ 3 = 3.8

9 / 46



Making an omelet

Good egg (s1) 0.8 Bad egg (s2) 0.2

Break into a bowl
(A1)

six egg omelet (o1) 6 no omelet and five good eggs
destroyed (o2) 1

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3) 4

five egg omelet and a cup to
wash (o4) 3

Throw away (A3)
five egg omelet and one good

egg destroyed (o5) 2 five egg omelet (o6) 5

o1 � o6 � o3 � o4 � o5 � o2 P(s1) = 0.8,P(s2) = 0.2

EU(A3) = P(s1) ∗ u(A3(s1)) + P(s2) ∗ u(A3(s2)) = 0.8 ∗ 2 + 0.2 ∗ 5 = 2.6
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Making an omelet

Good egg (s1) 0.8 Bad egg (s2) 0.2

Break into a bowl
(A1)

six egg omelet (o1) 6 no omelet and five good eggs
destroyed (o2) 1

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3) 4

five egg omelet and a cup to
wash (o4) 3

Throw away (A3)
five egg omelet and one good

egg destroyed (o5) 2 five egg omelet (o6) 5

o1 � o6 � o3 � o4 � o5 � o2 P(s1) = 0.8,P(s2) = 0.2

EU(A1) = 5 > EU(A2) = 3.8 > EU(A3) = 2.6
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Making an omelet

Good egg (s1) 0.8 Bad egg (s2) 0.2

Break into a bowl
(A1)

six egg omelet (o1) 9 no omelet and five good eggs
destroyed (o2) 0

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3) 8

five egg omelet and a cup to
wash (o4) 7

Throw away (A3)
five egg omelet and one good

egg destroyed (o5) 1 five egg omelet (o6) 8.5

o1 � o6 � o3 � o4 � o5 � o2 P(s1) = 0.8,P(s2) = 0.2

u(o1) = 9, u(o6) = 8.5, u(o3) = 8, u(o4) = 7, u(o5) = 1, u(o2) = 0
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Making an omelet

Good egg (s1) 0.8 Bad egg (s2) 0.2

Break into a bowl
(A1)

six egg omelet (o1) 9 no omelet and five good eggs
destroyed (o2) 0

Break into a cup
(A2)

six egg omelet and a cup to
wash (o3) 8

five egg omelet and a cup to
wash (o4) 7

Throw away (A3)
five egg omelet and one good

egg destroyed (o5) 1 five egg omelet (o6) 8.5

o1 � o6 � o3 � o4 � o5 � o2 P(s1) = 0.8,P(s2) = 0.2

EU(A2) = 7.8 > EU(A1) = 7.2 > EU(A3) = 2.7
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EU(A) =
∑

o∈O PA(o) × U(o)

Expected utility of action A Utility of outcome o

Probability of outcome o conditional on A
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PA(o): probability of o conditional on A — how likely it is that outcome o will occur,
on the supposition that the agent chooses act A.

Evidential: PA(o) = P(o | A) =
P(o & A)

P(A)

Classical: PA(o) =
∑

s∈S P(s)fA,s(o), where

fA,s(o) =

1 A(s) = o
0 A(s) , o

Causal: PA(o) = P(A� o)

P(“if A were performed, outcome o would ensue”)

(Lewis, 1981)
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Three Immediate Issues with Expected Utility

1. St. Petersburg Game
2. Pasadena Game
3. Two Envelop Paradox
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St. Petersburg Paradox

A fair coin is tossed until it lands heads up. The player then receives a prize worth 2n

units of utility, where n is the number of times the coin is flipped.

The expected utility of this gamble is

1
2
· 2 +

1
4
· 4 +

1
8
· 8 + · · · =

∞∑
n=1

(
1
2

)n

· 2n = 1 + 1 + 1 + · · · = ∞

Utility is bounded
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Moscow game: A manipulated coin, which lands heads up with probability 0.4 is
tossed until it lands heads up the first time. The player then receives a prize worth 2n

units of utility, where n is the number of times the coin was tossed.

Intuitively, Moscow game should be preferred to the St. Petersburg game, but both
have infinite expected utility.

14 / 46
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The Pasadena Game

Toss a fair coin until it lands heads up for the first time. Suppose this happens at toss
number n. If n is odd, you win (2n)/n units, but if n is even you pay (2n)/n.

The expected utility of this game is:

1
2
·

2
1
−

1
4
·

4
2

+
1
8
·

8
3
−

1
16
·

16
4

+ · · · =
∑

n

(−1)n−1

n

The infinite sum is conditionally convergent
∑

i xi converges, but
∑

i |xi| diverges. By
the Riemann rearrangement theorem, its terms can be rearranged to converge to any
given value, include +∞ and −∞. What is the expected utility of this game?
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The Two Envelop Paradox

Suppose that you have a choice between two envelops, each containing some money.
A trustworthy informant tells you that one of the envelops contains exactly twice as
much as the other, but not which is which. Since this is all you know, you pick an
envelop at random. Just before you open the envelop, you are given the opportunity to
switch envelops. Should you swap?

Yes: Suppose the chosen envelop has $x. The other envelop has either 1
2 · x dollars or

2 · x dollars. Each is equally likely, so the expected utility of switching is

1
2
·

1
2
· x +

1
2
· 2 · x = 1.25 · x

16 / 46
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Cardinal Utility Theory
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Cardinal Utility Theory

u : X → R

Which comparisons are meaningful?

1. u(x) and u(y)? (ordinal utility)

2. u(x) − u(y) and u(a) − u(b)?
3. u(x) and 2 ∗ u(z)?
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Ordinal vs. Cardinal Utility
Ordinal scale: Qualitative comparisons of objects allowed, no information about
differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects
differences between objects.

E.g., the difference between 75◦F and 70◦F is the same as the difference between
30◦F and 25◦F However, 70◦F (= 21.11◦C) is not twice as hot as 35◦F
(= 1.67◦C).

Ratio scale: Quantitative comparisons of objects, accurately reflects ratios
between objects. E.g., 10lb (= 4.53592kg) is twice as much as 5lb
(= 2.26796kg).
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Cardinal Utility Theory

x � y � z is represented by both (3, 2, 1) and (1000, 999, 1), so we cannot say y
whether is “closer” to x than to z.

Key idea: Ordinal preferences over lotteries allows us to infer a cardinal scale (with
some additional axioms).

John von Neumann and Oskar Morgenstern. The Theory of Games and Economic Behavior. Princeton
University Press, 1944.
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A Choice

R

B

W

S

Take or Gamble?

B

R S

Take Gamble

0.5 0.5

[1 : B] ∼ [p : R, 1 − p : S]
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A Choice

R

B

W

S

Take or Gamble?

B

R S

Take Gamble

p 1 − p

1 ∗ u(B) = p ∗ u(R) + (1 − p) ∗ u(S)
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W

S

Take or Gamble?

B

R S

Take Gamble

p 1 − p

u(B) = p ∗ 1 + (1 − p) ∗ 0 = p
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Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted [x1 : p1, x2 : p2, . . . , xn : pn] where for
i = 1, . . . , n, xi ∈ X and pi ∈ [0, 1], and

∑
i pi = 1.

Let L be the set of (simple) lotteries over X. We identify elements x ∈ X with the
lottery [x : 1].

Suppose that � is a relation on L.
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Lotteries

Suppose that X = {x1, . . . , xn} is a set of outcomes. A lottery over X is a tuple
[p1 : x1, . . . , pn : xn] where

∑
i pi = 1.

x1 x2
· · · xn−1 xn

p1 p2 pn−1 pn

Let L be the set of lotteries. Suppose that �⊆ L × L is a preference ordering on L.
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Axioms
Preference � is reflexive, transitive and complete

Compound Lotteries The decision maker is indifferent between every
compound lottery and the corresponding
simple lottery.

Independence For all L1,L2,L3 ∈ L and a ∈ (0, 1], L1 � L2

if, and only if,
[L1 : a,L3 : (1 − a)] � [L2 : a,L3 : (1 − a)].

Continuity For all L1,L2,L3 ∈ L and a ∈ (0, 1],
if L1 � L2 � L3, then there exists a, b ∈ (0, 1)
such that [L1 : a,L3 : (1 − a)] � L2 and
L2 � [L1 : b,L3 : (1 − b)].
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u : L → < is linear provided for all L = [L1 : p1, . . . ,Ln : pn] ∈ L,

u(L) =

n∑
i=1

piu(Li)

von Neumann-Morgenstern Representation Theorem A binary relation � on L
satisfies Preference, Compound Lotteries, Independence and Continuity iff � is
representable by a linear utility function u : L → <.

Moreover, u′ : L → < represents � iff there exists real numbers c > 0 and d such that
u′(·) = cu(·) + d. (“u is unique up to linear transformations.”)
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Axioms of Cardinal Utility

Suppose that X is a set of outcomes and consider lotteries over X (i.e., probability
distributions over X)

A compound lottery is αL + (1 − α)L′ meaning “play lottery L with probability α
and L′ with probability 1 − α”

Running example: Suppose Ann prefers pizza (p) over taco (t) over yogurt (y)
(p � t � y) and consider the different lotteries where the prizes are p, t and y.
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Continuity

Continuity: for all options a, b and c if a � b � c, there is some lottery L with
probability p of getting a and (1 − p) of getting c such that the agent is indifferent
between L and b.

b

1 ∼

a c

p 1 − p
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p � t � y

Suppose Ann has t.

Consider the lottery L = 0.99 get y and 0.01 get p
Would Ann trade t for L?

Consider the lottery L′ = 0.99 get p and 0.01 get y
Would Ann trade t for L’?

Continuity says that there is must be some lottery where Ann is indifferent between
keeping t and playing the lottery.
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Better Prizes
Better Prizes: suppose L1 is a lottery over (w, x) and L2 is over (y, z) suppose that L1

and L2 have the same probability over prizes. The lotteries each have an equal prize in
one position they have unequal prizes in the other position then if L1 is the lottery
with the better prize then L1 � L2; if neither lottery has a better prize then L1 ≈ L2.

a c

p 1 − p �

b c

p 1 − p

�
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p � t � y

Lottery 1 (L1) is 0.6 chance for p and 0.4 chance for y

Lottery 2 (L2) is 0.6 chance for t and 0.4 chance for y

Since Ann prefers p to t, this axiom says that Ann prefers L1 to L2
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Better Chances

Better Chances: Suppose L1 and L2 are two lotteries which have the same prizes,
then if L1 offers a better chance of the better prize, then L1 � L2

a b

p 1 − p

p > q

a � b

�

a b

q 1 − q
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p � t � y

Lottery 1 (L1) is 0.7 chance for p and 0.3 chance for y

Lottery 2 (L2) is 0.6 chance for p and 0.4 chance for y

This axioms states that Ann must prefer L1 to L2
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Reduction of Compound Lotteries

Reduction of Compound Lotteries: If the prize of a lottery is another lottery, then
this can be reduced to a simple lottery over prizes.

This eliminates utility from the thrill of gambling and so the only ultimate concern is
the prizes.
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a

b c

p 1 − p

q 1 − q

∼

a b c

p (1 − p)q (1 − p)(1 − q)
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Von Neumann-Morgenstern Theorem

Suppose that L is the set of lotteries. A function u : L → < is linear provided for all
L = [L1 : p1, . . . ,Ln : pn] ∈ L,

u(L) =

n∑
i=1

piu(Li)

Von Neumann-Morgenstern Theorem. A binary relation � on L is transitive,
complete, and satisfies Continuity, Better Prizes, Better Chances, Reduction of
Compound Lotteries iff � is representable by a linear utility function u : L → <.

Moreover, u′ : L → < represents � iff there exists real numbers c > 0 and d such that
u′(·) = cu(·) + d. (“u is unique up to linear transformations.”)
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Independence

Independence For all L1,L2,L3 ∈ L and a ∈ (0, 1],

L1 � L2 if, and only if, [L1 : a,L3 : (1 − a)] � [L2 : a,L3 : (1 − a)].
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Axioms
Preference � is reflexive, transitive and complete

Compound Lotteries The decision maker is indifferent between every
compound lottery and the corresponding
simple lottery.

Independence For all L1,L2,L3 ∈ L and a ∈ (0, 1], L1 � L2

if, and only if,
[L1 : a,L3 : (1 − a)] � [L2 : a,L3 : (1 − a)].

Continuity For all L1,L2,L3 ∈ L and a ∈ (0, 1],
if L1 � L2 � L3, then there exists a ∈ (0, 1)
such that [L1 : a,L3 : (1 − a)] ∼ L2
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u : L → < is linear provided for all L = [L1 : p1, . . . ,Ln : pn] ∈ L,

u(L) =

n∑
i=1

piu(Li)

von Neumann-Morgenstern Representation Theorem A binary relation � on L
satisfies Preference, Compound Lotteries, Independence and Continuity iff � is
representable by a linear utility function u : L → <.

Moreover, u′ : L → < represents � iff there exists real numbers c > 0 and d such that
u′(·) = cu(·) + d. (“u is unique up to linear transformations.”)
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Von Neumann-Morgenstern

S is a finite set of states and X is a set of outcomes.

A lottery is a function p : X → [0, 1] satisfying the usual probability axioms. Let LX

be the set of lotteries on X.

Theorem. �⊆ LX × LX satisfies the vNM-axioms iff there is a probability a utility
function u : X → R such that

p � q iff
∑
x∈X

p(x)u(x) ≥
∑
x∈X

q(x)u(x)
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Aumann-Anscombe

S is a finite set of states and X is a set of outcomes.

A horse lottery is a function h : S→ LX (write hs for h(s)). LetH be the set of horse
lotteries.

Theorem. �⊆ H ×H satisfies the AA-axioms iff there is a probability distribution µ
on S and a utility function u : X → R such that

h � g iff
∑
s∈S

µ(s)
∑
x∈X

hs(x)u(x) ≥
∑
s∈S

µ(s)
∑
x∈X

gs(x)u(x)
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Savage

S is a countable set of states, F some algebra on S and X is a set of outcomes.

An act is a function f : S→ X. LetA be the set of acts.

Theorem. �⊆ A ×A satisfies the S-axioms iff there is a probability distribution µ on
(S,F ) and a utility function u : X → R such that

f � g iff
∫

S
u[f (s)]dµ ≥

∫
S

u[g(s)]dµ
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Cardinal Utility Theory

I Utility is unique only up to linear transformations. So, it still does not make
sense to add two different agents cardinal utility functions.

I Issue with continuity: 1EUR � 1 cent � death, but who would accept a lottery
which is p for 1EUR and (1 − p) for death??

I Important issues about how to identify correct descriptions of the outcomes and
options.
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Issue with Better Prizes

Suppose you have a kitten, which you plan to give away to either Ann or Bob. Ann
and Bob both want the kitten very much. Both are deserving, and both would care for
the kitten. You are sure that giving the kitten to Ann (x) is at least as good as giving
the kitten to Bob (y) (so x � y). But you think that would be unfair to Bob. You
decide to flip a fair coin: if the coin lands heads, you will give the kitten to Bob, and
if it lands tails, you will give the kitten to Ann.

as (J. Drier, “Morality and Decision Theory” in Handbook of Rationality)
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Better Prizes
Better Prizes: suppose L1 is a lottery over (w, x) and L2 is over (y, z) suppose that L1

and L2 have the same probability over prizes. The lotteries each have an equal prize in
one position they have unequal prizes in the other position then if L1 is the lottery
with the better prize then L1 � L2; if neither lottery has a better prize then L1 ≈ L2.

a c

p 1 − p �

b c

p 1 − p

�
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Give to Ann
L1

x x

0.5 0.5

Fair lottery
L2

y x

0.5 0.5

I x is the outcome “Ann gets the kitten”
I y is the outcome “Bob gets the kitten”
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Give to Ann
L1

�

x x

0.5 0.5

Fair lottery
L2

y x

0.5 0.5

I x is the outcome “Ann gets the kitten, in a fair way”
I y is the outcome “Bob gets the kitten”
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Give to Ann
L1

�

x x

0.5 0.5

Fair lottery
L2

y z

0.5 0.5

Different outcomes

I x is the outcome “Ann gets the kitten”
I z is the outcome “Ann gets the outcome, fairly
I y is the outcome “Bob gets the kitten, fairly”
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Give to Ann
L1

�k
�f

x x

0.5 0.5

Fair lottery
L2

y z

0.5 0.5

Different outcomes

If all the agent cares about is who gets the kitten, then L1 � L2

If all the agent cares about is being fair, then L1 � L2
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Allais Paradox

Options Red (1) White (89) Blue (10)

S1 A 1M 1M 1M

B 0 1M 5M

A � B iff C � B
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Allais Paradox

Options Red (1) White (89) Blue (10)

S2 C 1M 0 1M

D 0 0 5M

A � B iff C � B
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