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Plan

I Introduction, Background, Voting Theory, May’s Theorem, Arrow’s
Theorem

I Social Choice Theory: Variants of Arrow’s Theorem, Weakening Arrow’s
Conditions (Domain Conditions), Harsanyi’s Theorem, Characterizing
Voting Methods

I Strategizing (Gibbard-Satterthwaite Theorem) and Iterative Voting/
Introduction to Judgement Aggregation

I Aggregating Judgements (linear pooling, wisdom of the crowds,
prediction markets), Probabilistic Social Choice.

I Logics for Social Choice Theory (Preference Logic, Modal Logic,
Dependence/Independence Logic, First Order Logic)
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Arrow’s Theorem

K. Arrow. Social Choice and Individual Values. John Wiley & Sons, 1951.
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http://cowles.econ.yale.edu/P/cm/m12-2/m12-2-all.pdf


Arrow’s Theorem

Let X be a finite set with at least three elements and N a finite set of n
voters.

Social Welfare Function: F : D → O(X) whereD ⊆ O(X)n

Reminders:

I O(X) is the set of transitive and complete relations on X
I For R ∈ O(X), let PR denote the strict subrelation and IR the

indifference subrelation:
I A PR B iff A R B and not B R A
I A IR B iff A R B and B R A
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Unanimity

F : D → O(X)

If each agent ranks A above B, then so does the social ranking.

For all profiles R = (R1, . . . ,Rn) ∈ D:

If for each i ∈ N, A Pi B then A PF(R) B
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Universal Domain

F : D → O(X)

Voter’s are free to choose any preference they want.

The domain of F is the set of all profiles, i.e.,D = O(X)n.
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Independence of Irrelevant Alternatives

F : D → O(X)

The social ranking (higher, lower, or indifferent) of two alternatives
A and B depends only the relative rankings of A and B for each voter.

For all profiles R = (R1, . . . ,Rn) and R′ = (R′1, . . . ,R
′
n):

If Ri{A,B} = R′i {A,B} for all i ∈ N, then F(R){A,B} iff F(R′){A,B}.

where R{X,Y} = R ∩ {X,Y} × {X,Y}
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IIA For all profiles R = (R1, . . . ,Rn) and R′ = (R′1, . . . ,R
′
n):

If Ri{A,B} = R′i {A,B} for all i ∈ N, then F(R){A,B} iff F(R′){A,B}.

IIA∗ For all profiles R = (R1, . . . ,Rn) and R′ = (R′1, . . . ,R
′
n):

If A Ri B iff A R′i B for all i ∈ N, then A F(R) B iff A F(R′) B.
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Dictatorship

F : D → O(X)

A voter d ∈ N is a dictator if society strictly prefers A over B whenever
d strictly prefers A over B.

There is a d ∈ N such that for each profile R = (R1, . . . ,Rd, . . . ,Rn), if
A Pd B, then A PF(R) B
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M. Morreau. Arrow’s Theorem. Stanford Encyclopedia of Philosophy, 2014.
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http://plato.stanford.edu/entries/arrows-theorem/


Arrow’s Theorem

Theorem (Arrow, 1951). Suppose that there are at least three can-
didates and finitely many voters. Any social welfare function that
satisfies universal domain, independence of irrelevant alternatives
and unanimity is a dictatorship.

11 / 99



Arrow’s Theorem

D. Campbell and J. Kelly. Impossibility Theorems in the Arrovian Framework. Hand-
book of Social Choice and Welfare Volume 1, pgs. 35 - 94, 2002.

W. Gaertner. A Primer in Social Choice Theory. Oxford University Press, 2006.

J. Geanakoplos. Three Brief Proofs of Arrow’s Impossibility Theorem. Economic Theory,
26, 2005.

P. Suppes. The pre-history of Kenneth Arrow’s social choice and individual values. Social
Choice and Welfare, 25, pgs. 319 - 326, 2005.
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http://suppescorpus.stanford.edu/articles/mpm/406.pdf


Arrow’s Theorem

Theorem (Arrow, 1951). Suppose that there are at least three candidates and
finitely many voters. Any social welfare function that satisfies universal
domain, independence of irrelevant alternatives and unanimity is a
dictatorship.
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Weakening IIA

Given a profile and a set of candidates S ⊆ X, let R|S denote the restriction of
the profile to candidates in S.

Binary Independence: For all profiles R,R′ and candidates A,B ∈ X:

If R|{A,B} = R′|{A,B}, then F(R)|{A,B} = F(R′)|{A,B}

m-Ary Independence: For all profiles R,R′ and for all S ⊆ X with |S| = m:

If R|S = R′|S, then F(R)|S = F(R′)|S
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Weakening IIA

Theorem. (Blau) Suppose that m = 2, . . . , |X| − 1. If a social welfare function F
satisfies m-ary independence, then it also satisfies binary independence.

J. Blau. Arrow’s theorem with weak independence. Economica, 38, pgs. 413 - 420, 1971.
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S. Cato. Independence of Irrelevant Alternatives Revisited. Theory and Decision, 2013.
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Let S ⊆ ℘(X). F is S-independent if for all profiles R,R′, and all S ∈ S,

if R|S = R′|S, then F(R)|S = F(R′)|S

S ⊆ ℘(X) is connected provided for all x, y ∈ X there is a finite set
S1, . . . ,Sk ∈ S such that

{x, y} =
⋂

j∈{1,...,k}

Sj

Theorem (Sato). (i) Suppose that S ⊆ ℘(X) is connected. If a collective choice
rule F satisfies S-independence, then it also satisfies binary independence.

(ii) Suppose that S ⊆ ℘(X) is not connected. Then, there exists a social welfare
function F that satisfies S-independence and weak Pareto but does not satisfy
binary independence.
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Arrow’s Theorem

Theorem (Arrow, 1951). Suppose that there are at least three candidates and
finitely many voters. Any social welfare function that satisfies universal
domain, independence of irrelevant alternatives and unanimity is a
dictatorship.
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Weakening Unanimity

F : D → O(X)

Dictatorial: there is a d ∈ N such that for all A,B ∈ X and all profiles R:
if A Pd B, then A PF(R) B

Inversely Dictatorial: there is a d ∈ N such that for all A,B ∈ X and all profiles
R: if A Pd B, then B PF(R) A

Null: For all A,B ∈ X and for all R ∈ D: A IF(R) B

Non-Imposition: For all A,B ∈ X, there is a R ∈ D such that A F(R) B
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Weakening Unanimity

Theorem (Wilson) Suppose that N is a finite set. If a social welfare function
satisfies universal domain, independence of irrelevant alternatives and
non-imposition, then it is either null, dictatorial or inversely dictatorial.

R. Wilson. Social Choice Theory without the Pareto principle. Journal of Economic Theory, 5, pgs.
478 - 486, 1972.

Y. Murakami. Logic and Social Choice. Routledge, 1968.

S. Cato. Social choice without the Pareto principle: A comprehensive analysis. Social Choice and
Welfare, 39, pgs. 869 - 889, 2012.
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Arrow’s Theorem

Theorem (Arrow, 1951). Suppose that there are at least three candidates and
finitely many voters. Any social welfare function that satisfies universal
domain, independence of irrelevant alternatives and unanimity is a
dictatorship.
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Social Choice Functions

F : D → ℘(X) − ∅

Resolute: For all profiles R ∈ D, |F(R)| = 1

Non-Imposed: For all candidates A ∈ X, there is a R ∈ D such that F(R) = {A}.

Monotonicity: For all profiles R and R′, if A ∈ F(R) and for all i ∈ N,
NR(A Pi B) ⊆ NR′(A P′i B) for all B ∈ X − {A}, then A ∈ F(R′).

Dictator: A voter d is a dictator if for all R ∈ D, F(R) = {A}, where A is d’s top
choice.
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Social Choice Functions

Muller-Satterthwaite Theorem. Suppose that there are more than three
alternatives and finitely many voters. Every resolute social choice function
F : L(X)n → X that is monotonic and non-imposed is a dictatorship.

E. Muller and M.A. Satterthwaite. The Equivalence of Strong Positive Association and Strategy-
Proofness. Journal of Economic Theory, 14(2), pgs. 412 - 418, 1977.
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Arrow’s Theorem

Theorem (Arrow, 1951). Suppose that there are at least three candidates and
finitely many voters. Any social welfare function that satisfies universal
domain, independence of irrelevant alternatives and unanimity is a
dictatorship.

24 / 99



I Infinitely many voters.
I Domain restrictions.
I Richer ballots.
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Universal Domain

Universal Domain: The domain of the social welfare (choice) function is
D = L(X)n (or O(X)n)

Epistemic Rationale: “If we do not wish to require any prior knowledge of the
tastes of individuals before specifying our social welfare function, that
function will have to be defined for every logically possible set of individual
orderings.” (Arrow, 1963, pg. 24)
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Domain Restrictions

I Single-Peaked preferences
I Sen’s Value Restriction
I Assumptions about the distribution of preferences

W. Gaertner. Domain Conditions in Social Choice Theory. Cambridge University Press, 2001.

27 / 99



1 1 1

A B C

B C A
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1 1 1

A B C

B C A

C A B

Alternatives
A B C
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D. Black. On the rationale of group decision-making. Journal of Political Economy, 56:1, pgs. 23 -
34, 1948.
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Single-Peakedness: the preferences of group members are said to be
single-peaked if the alternatives under consideration can be represented as
points on a line and each of the utility functions representing preferences over
these alternatives has a maximum at some point on the line and slopes away
from this maximum on either side.

Theorem. If there is an odd number of voters that display single-peaked
preferences, then a Condorcet winner exists.
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D. Miller. Deliberative Democracy and Social Choice. Political Studies, 40, pgs. 54 - 67, 1992.

C. List, R. Luskin, J. Fishkin and I. McLean. Deliberation, Single-Peakedness, and the Possibility of
Meaningful Democracy: Evidence from Deliberative Polls. Journal of Politics, 75(1), pgs. 80 - 95,
2013.
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http://personal.lse.ac.uk/list/PDF-files/DeliberationPaper.pdf
http://personal.lse.ac.uk/list/PDF-files/DeliberationPaper.pdf


Sen’s Value Restriction

A. Sen. A Possibility Theorem on Majority Decisions. Econometrica 34, 1966, pgs. 491 - 499.
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Sen’s Theorem

Assume n voters (n is odd).

Triplewise value-restriction: For every triple of distinct candidates A,B,C
there exists an xi ∈ {A,B,C} and r ∈ {1, 2, 3} such that no voter ranks xi has her
rth preference among A,B,C.

Theorem (Sen, 1966). For every profile satisfying triplewise value-restriction,
pairwise majority voting generates a transitive group preference ordering.
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Restrict the distribution of preferences

M. Regenwetter, B. Grofman, A.A.J. Marley and I. Tsetlin. Behavioral Social Choice. Cambridge
University Press, 2006.
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Let P be a probability on L(X).

For any pair A,B ∈ X, let PAB be the marginal
pairwise ranking probability for A over B:

PAB =
∑

R∈L(X),ARB

P(P)

For any triple A,B,C:
PABC =

∑
R∈L(X),ARBRC

P(P)

The net probability induced by P is: NP(R) = P(R) − P(R−1), where R ∈ L(X)
and R−1 in the inverse of R (A R−1 B iff B R A).

NPABC = PABC − PCBA
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Fix three candidates {A,B,C}

NP satisfies NW(C) iff NPABC ≤ 0 and NPBAC ≤ 0

NP satisfies NM(C) iff NPACB ≤ 0 and NPBCA ≤ 0 (⇔ NPACB = 0)
NP satisfies NB(C) iff NPCAB ≤ 0 and NPCBA ≤ 0

NP is marginally value restricted for the triple {Y,Z,W} iff there is an element
C ∈ {Y,Z,W} such that NP satisfies NW(c), NB(c) or NB(c). Net value
restriction holds on X if marginal net value restrictions holds on each triple.
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Consider a probability P on L(X). A weak majority preference relation � and a
strict majority preference relation � are defined as follows:

A � B iff PAB ≥ PBA

A � B iff PAB > PBA
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Theorem (Regenwetter et al.). The weak majority preference relations is
transitive iff for each triple {A,B,C} ⊆ X at least one of the following two
conditions holds:

1. NP is marginally value restricted on {A,B,C}

and, in addition, if at least
one net preference is nonzero then the following implication is true
NPABC = 0⇒ NPBAC , NPACB (with possible relabelings).

2. There is a R0 ∈ {ABC,ACB,BAC,BCA,CAB,CBA} such that R0 has
marginal net preference majority.

We say CDE has net preference majority provided:

NPCDE >
∑

R′∈{CED,DEC,DCE,ECD,EDC},NP(R′)>0

NPR′
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I Infinitely many voters.
I Domain restrictions.
I Richer ballots.
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Approval Voting: Each voter selects a subset of candidates. The candidate
with the most “approvals” wins the election.

S. Brams and P. Fishburn. Approval Voting. Birkhauser, 1983.

J.-F. Laslier and M. R. Sanver (eds.). Handbook of Approval Voting. Studies in Social Choice and
Welfare, 2010.
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Under Approval Voting (AV), voters are asked to select the candidates that
the voter approves.

Under ranking voting procedures (such as Borda Count), voters are asked to
(linearly) rank the candidates.

The two pieces of information are related, but not derivable from each other

Approving of a candidate is not (necessarily) the same as simply ranking the
candidate first.
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Why Approval Voting?

www.electology.org/approval-voting

S. Brams and P. Fishburn. Going from Theory to Practice: The Mixed Success of Approval Voting.
Handbook of Approval Voting, pgs. 19-37, 2010.
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Example

Voters A B C D

1 1 0 1 1

2 0 1 1 0

3 0 1 0 0

4 0 0 0 0

5 1 1 1 1

1 2 3 4 5

A B D D D

B C B D D

C A C D D

D D A D D

An AV ballot is sincere if, given the lowest-ranked candidate that a voter
approves of, he or she also approves of all candidates ranked higher.
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Approval Voting is more flexible

There is no fixed rule that always elects a unique Condorcet winner.

# voters 2 2 1

A B C

D D A

B A B

C C D

The Condorcet winner is A.
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Approval Voting is more flexible

AV may elect the Condorcet winner

# voters 2 2 1
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D D A
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The Condorcet winner is A.
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Possible Failure of Unanimity

# voters 1 1 1

A C D

B A A

C B B

D D C

Approval Winners: A,B
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Indeterminate or Responsive?

# voters 6 5 4

A B C

C C B

B A A

Plurality winner: A, Borda and Condorcet winner: C.
Any of A, B or C can be an AV winner.
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Generalizing Approval Voting

Ask the voters to provide both a linear ranking of the candidates and the
candidates that they approve.

Make the ballots more expressive: Dis&Approval voting, RangeVoting,
Majority Judgement

49 / 99



Generalizing Approval Voting

Ask the voters to provide both a linear ranking of the candidates and the
candidates that they approve.

Make the ballots more expressive: Dis&Approval voting, RangeVoting,
Majority Judgement

49 / 99



Generalizing Approval Voting

Ask the voters to provide both a linear ranking of the candidates and the
candidates that they approve.

Make the ballots more expressive: Dis&Approval voting, RangeVoting,
Majority Judgement

49 / 99



Grading

In many group decision situations, people use measures or grades from a
common language of evaluation to evaluate candidates or alternatives:

I in figure skating, diving and gymnastics competitions;
I in piano, flute and orchestra competitions;
I in classifying wines at wine competitions;
I in ranking university students;
I in classifying hotels and restaurants, e.g., the Michelin ∗
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Voting by Grading: Questions

I What grading language should be used? (e.g., A − F, 0 − 10, ∗ − ∗∗∗∗)

I How should we aggregate the grades? (e.g., Average or Median)

I Should there be a “no opinion” option?
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Voting by Grading: Examples

Approval Voting: voters can assign a single grade “approve” to the
candidates

Dis&Approval Voting: voters can approve or disapprove of the candidates

Majority Judgement, Score Voting: voters can assign any grade from a fixed
set of grades to the candidates
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Score Voting/Range Voting

Fixe a common grading language consisting of, for example, the integers
{0, 1, 2, . . . , 10}

The candidate with the largest average grade is declared the winner.

Suppose A’s grades are {7, 7, 8, 8, 9, 9, 9, 10}. The average grade is 8.375

Suppose B’s grades are {9, 9, 9, 9, 9, 10, 10, 10} . The average grade is 9.375

So, Score Vote (Range Vote) ranks B above candidate A.

www.electology.org/score-voting and rangevoting.org
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Majority Judgement
Fix a common grading language. For example, {0, 1, 2, . . . , 10}

The candidate with the largest median grade is declared the winner.

The median grade is the grade that is in the middle of the list when the grades
are ordered (If there is an even number of judges, then the median grade is
the lowest grade in the middle interval.)

Suppose that A’s grades are {6, 6, 7, 7, 7, 8, 9, 10, 10}: The median grade is 7.

Suppose B’s grades are {6, 6, 6, 6, 9, 9, 9, 10}: The median grade is 6.

Majority Judgement ranks B above A.
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Majority Judgement: Tie-breaking rules

What happens when the median grades are the same?

A’s grades: {7, 9, 9, 11, 11}
B’s grades: {8, 9, 9, 10, 11}

The second median grade is found:
A’s grades: {7, 9, 9, 11, 11}
B’s grades: {8, 9, 9, 10, 11}

The third median grade is found:
A’s grades: {7, 9, 9, 11, 11}
B’s grades: {8, 9, 9, 10, 11}

So, A is ranked above B.
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Example

Suppose that there are five voters, 1, . . . , 5 and three candidates I, II, and III.
The grades are A,B,C,D, or F (from best to worst).

1 2 3 4 5 Median

I A A C D D C

II B B F B F B

III D C B A D C

Candidate II is the majority judgement winner. If asked about their preference, 4
voters would rank candidate I above candidate II
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Example

Suppose that there are five voters, 1, . . . , 5 and three candidates I, II, and III.
The grades are A = 4,B = 3,C = 2,D = 1, or F = 0 (from best to worst).

1 2 3 4 5 Average

I 4 4 2 1 1 2.4

II 3 3 0 3 0 1.8

III 1 2 3 4 1 2.2

Candidate II is the Majority Judgement winner. Candidate I is the Score
Voting winner
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More Information

M. Balinski and R. Laraki. Majority Judgement: Measuring, Ranking and Electing. The MIT Press,
2010.

W. D. Smith. www.rangevoting.org. .
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S. Brams and R. Potthoff. The Paradox of Grading Systems. Manuscript, 2015.
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A grading system is a voting system in which a voter can give any of g
grades, {w1, . . . ,wg}, to each candidates.

AG winner: Candidate(s) that receives the largest average grade

SG winner: compare each candidate’s grades with the grades of all other
candidates. Candidate X beats candidate Y if the number of voters who grade
X higher than Y exceed the number of voters that grade Y higher than X. The
candidate(s) that beat every other candidate is(are) the SG winner(s).
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Weak Paradox of Grading Systems
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Grades: {0, 1, 2}
Candidates: {A,B,C}
9 Voters

# voters 2 3 4 Avg

A 2 0 1 8/9

B 1 2 0 8/9

C 0 1 2 11/9

Average Grade Winner: C

Superior Grade Winner: A,B,C
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Strong Paradox of Grading Systems
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Grades: {0, 1, 2, 3}
Candidates: {A,B,C}
3 Voters

# voters 1 1 1 Avg

A 3 2 0 8/9

B 0 3 1 8/9

C 0 3 1 11/9

Average Grade Winner: C

Superior Grade Winner: A,B,C

61 / 99



Grades: {0, 1, 2, 3}
Candidates: {A,B,C}
3 Voters

# voters 1 1 1 Avg

A 3 2 0 5/3

B 0 3 1 4/3

C 0 3 1 4/3

Average Grade Winner: A

Superior Grade Winner: A,B,C
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Grades: {0, 1, 2, 3, 4, 5}
Candidates: {A,B,C}
5 Voters

# voters 1 4 Avg

A 5 0 5/5

B 0 1 4/5

C 0 1 4/5

Average Grade Winner: A

Superior Grade Winner: B,C
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To conclude, we have identified a paradox of grading systems, which is not
just a mirror of the well-known differences that crop up in aggregating votes
under ranking systems. Unlike these systems, for which there is no accepted
way of reconciling which candidate to choose when, for example, the Hare,
Borda and Condorcet winners differ, AV provides a solution when the AG
and SG winners differ.

Theorem. When there are two grades, the AG and SG winners are identical.
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Harsanyi’s Theorem
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Assume that there is a finite number of citizens (N = {1, . . . ,n}), and a finite set
of social states X.

Assume that there is a Planner.

I The planner’s utility function matches the social utility function
I If the Planner is a citizen, he is required to have two (but not necessarily

different) preference orderings — his personal ordering and his moral
ordering.

64 / 99



Assume that there is a finite number of citizens (N = {1, . . . ,n}), and a finite set
of social states X.

Assume that there is a Planner.

I The planner’s utility function matches the social utility function
I If the Planner is a citizen, he is required to have two (but not necessarily

different) preference orderings — his personal ordering and his moral
ordering.

64 / 99



Individual and Social Rationality Each citizen and the Planner have a
ranking �1,�2, . . . ,�n,� over L(X) (the set of lotteries over the social states X)
satisfying the Von Neumann-Morgenstern axioms.
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Subjective Expected Utility

Probability: Suppose that W = {w1, . . . ,wn} is a finite set of states. A
probability function on W is a function P : W → [0, 1] where

∑
w∈W P(w) = 1

(i.e., P(w1) + P(w2) + · · · + P(wn) = 1).

Suppose that A is an act for a set of outcomes O (i.e., A : W → O) and
u : O→ R is a cardinal utility function. The expected utility of A is:∑

w∈W

P(w) ∗ u(A(w))
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Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information
about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects
differences between objects.

Ratio scale: Quantitative comparisons of objects, accurately reflects
ratios between objects.
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Interval scale: E.g., the difference between 75◦F and 70◦F is the same as the
difference between 30◦F and 25◦F However, 70◦F (= 21.11◦C) is not twice as
hot as 35◦F (= 1.67◦C). The difference between 70◦F and 65◦F is not the same
as the difference between 25◦C and 20◦C.

Ratio scale: E.g., 10lb is twice as much as 5lb. But, 10kg is not twice as much
as 5lb.
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Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted [x1 : p1, x2 : p2, . . . , xn : pn] where for
i = 1, . . . ,n, xi ∈ X and pi ∈ [0, 1], and

∑
i pi = 1.

Let L be the set of (simple) lotteries over X. We identify elements x ∈ X with
the lottery [x : 1].

Suppose that � is a relation on L.
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Axioms
Preference � is reflexive, transitive and complete

Compound Lotteries The decision maker is indifferent between every
compound lottery and the corresponding
simple lottery.

Independence For all L1,L2,L3 ∈ L and a ∈ (0, 1], L1 � L2

if, and only if,
[L1 : a,L3 : (1 − a)] � [L2 : a,L3 : (1 − a)].

Continuity For all L1,L2,L3 ∈ L and a ∈ (0, 1],
if L1 � L2 � L3, then there exists a ∈ (0, 1)
such that [L1 : a,L3 : (1 − a)] ∼ L2
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Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous
axioms, then the agent’s ordinal utility function can be turned into cardinal
utility function.

I Utility is unique only up to linear transformations. So, it still does not make
sense to add two different agents cardinal utility functions.

I Issue with continuity: 1EUR � 1 cent � death, but who would accept a
lottery which is p for 1EUR and (1 − p) for death??

I Important issues about how to identify correct descriptions of the
outcomes and options.
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Individual and Social Rationality Each citizen and the Planner have a
ranking �1,�2, . . . ,�n,� over L(X) (the set of lotteries over the social states X)
satisfying the Von Neumann-Morgenstern axioms.

I Each citizen’s preference is represented by a linear utility function ui

I The Planner’s preference is represented by a linear utility function u
I Assume that all the citizens use 0 to 1 utility scales.
I Assume that 0 is the lowest utility scale for the Planner.
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Strong Pareto

(P1) For each L,L′ if L ∼i L′ for all i ∈ N, then L ∼ L′

(P2) For each L,L′ if L �i L′ for all i ∈ N and L �j L′ for some j ∈ N,
(P2) then L � L′
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Each lottery L is associated with a vector of real numbers,
(ui(L), . . . ,un(L)) ∈ <n. That is, the sequence of utility values of L for each
agent.

Defined the following two sets:

Rn = {(r1, . . . , rn) ∈ <n | there is a L ∈ L such that for all i = 1, . . . ,n, ui(L) = ri}

and
R = {r ∈ < | there is a L ∈ L such that u(L) = r}

Define a function f : Rn → R as follows: for all (r1, . . . , rn), let f (r1, . . . , rn) = r
where r = u(L) with L a lottery such that (u1(L), . . . ,un(L)) = (r1, . . . , rn).
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Observation. The function f is well-defined.

Proof. Suppose that L,L′ ∈ L such that (u1(L), . . . ,un(L)) = (u1(L′), . . . ,un(L′)).
Then, for all i ∈ N, i is indifferent between L and L′ (i.e., L ∼i L′). Then, by
axiom P1, we have L ∼ L′. Thus, u(L) = u(L′); and so, f is well-defined.
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Equity

(E) All agents should be treated equally by the Planner. Formally, this
means that f (r1, . . . , rn) = f (r′1, . . . , r

′
n) when there is a permutation π : N → N

such that for each i = 1, . . . ,n, r′i = rπ(i).
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Harsanyi’s Theorem For all (r1, . . . , rn) ∈ Rn, f (r1, . . . , rn) = r1 + · · · + rn.
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For each i ∈ N and L ∈ L, we have 0 ≤ ui(L) ≤ 1.

For each i ∈ N, let ei = (0, 0, . . . , 1, . . . , 0) (where there is a 1 in the ith position
and 0 everywhere else).

This corresponds to a situation in which a single agent gets her most preferred
outcome while all the other agents get their least-preferred outcome.
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Lemma. For each i, j ∈ N, f (ei) = f (ej)
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Lemma. For all a ∈ <, af (r1, . . . , rn) = f (ar1, . . . , arn).
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Let L be the lottery such that for each i ∈ N, ui(L) = ri. Consider the lottery
L′ = [L : a, 0 : (1 − a)], where 0 is the lottery in which everyone gets their
lowest-ranked outcome.

Then, for each i ∈ N, ui(0) = 0. Furthermore, by the Pareto principle P1, we
must have u(0) = 0.
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Then, for all i ∈ N, we have

1. ui(L′) = aui(L) + (1 − a)ui(0) = aui(L) = ari; and
2. u(L′) = au(L) + (1 − a)u(0) = au(L)

af (r1, . . . , rn) = au(L) (definition of f )

= u(L′) (item 2.)
= f (u1(L′), . . . ,un(L′)) (definition of f )
= f (ar1, . . . arn) (item 1.)
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Theorem. For all (r1, . . . , rn) ∈ Rn, f (r1, . . . , rn) = r1 + · · · + rn.
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Consider a lottery L such that for all i ∈ N, ui(L) = ri. Consider lotteries Li such
that ui(Li) = ri and for all j , i, uj(Li) = 0. Consider the lottery
L′ = [L1 : 1/n, . . . ,Ln : 1/n].

I ui(L′) =
∑n

k=1
1
nui(Lk) = 1

nui(Li) = 1
nri.

I f (0, . . . , rk, . . . , 0) = rkf (0, . . . , 1, . . . , 0) = rk
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Consider a lottery L such that for all i ∈ N, ui(L) = ri. Consider lotteries Li such
that ui(Li) = ri and for all j , i, uj(Li) = 0. Consider the lottery
L′ = [L1 : 1/n, . . . ,Ln : 1/n].

1 2 P
L1 r1 0 f (r1, 0) = r1 f (1, 0)

L2 0 r2 f (0, r2) = r2 f (0, 1)

L′ 1
2u(L1) + 1

2u(L2) = 1
2r1

1
2u(L1) + 1

2u(L2) = 1
2r1 f ( 1

2r1,
1
2r2)

1
2

f (r1, r2) = f (
1
2

r1,
1
2

r2) = u(L′) =
1
2

u(L1) +
1
2

u(L2) =
1
2

r1 f (1, 0) +
1
2

r2 f (0, 1)
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u(L′) =
∑n

k=1
1
n u(Lk)

=
∑n

k=1
1
n f (u1(Lk), . . . ,uk(Lk), . . . ,un(Lk))

=
∑n

k=1
1
n f (0, . . . , rk, . . . , 0)

=
∑n

k=1
1
n rk f (0, . . . , 1, . . . , 0)

=
∑n

k=1
1
n rk
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u(L′) = f (u1(L′), . . . ,un(L′))

= f ( 1
n r1, . . . ,

1
nrn)

= 1
n f (r1, . . . , rn)
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Thus,
1
n

f (r1, . . . , rk) = u(L′) =
n∑

k=1

1
n

rk =
1
n

n∑
k=1

rk

Hence, f (r1, . . . , rn) = r1 + · · · + rn, as desired.
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For 2 citizens, Harsanyi’s Theorem require the existence of the following
vectors of utilities:

(0, 0) (0, 1) (1, 0) (u1, 0) (0,u2) (u1,u2)

Problem. None of Harsanyi’s conditions guarantee the existence of this social
outcomes.
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Suppose the problem is to give a scholarship to exactly one of the citizens.

I (1, 0): give the scholarship to citizen 1
I (0, 1): give the scholarship to citizen 2

I What is the outcome (0, 0)?
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Distributable Goods Assumption

For every vector of numbers (u1, . . . ,un) with 0 ≤ ui ≤ 1, there is at least one
social option for which the distribution of citizens’ utilities equals the vector
in question.

A distributable good is one, such as food, health, education, talent, friendship,
for which all distributions throughout society are at least logically possible.
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Problem: Philosophers also look to social choice theory for help in resolving
problems in which interests conflict-situations, for example, in which citizens
gain only at the expense of others, or ones in which the citizens envy each
other, or prefer to sacrifice for each other. These are situations in which we
cannot count on the distributable goods assumption to hold.
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(1, 0) (0, 1)

(0, 0)

I (1, 0) is the best for citizen 1 and worst for citizen 2
I (0, 1) is the best for citizen 2 and worst for citizen 1
I (0, 0) is the worst for both citizens
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Special Prospects Assumption. There are three social options a, b and c such that
(1) the first citizen prefers b to a and is indifferent between a and c, (2) the
second citizen prefers c to a and is indifferent between a andb.
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(1, 0) (0, 1)

(0, 0)

b c

a

I 1 prefers b to a and is indifferent between a and c
I 2 prefers c to a and is indifferent between a and b.
I a, b, and c can be very similar or “close” to each other

93 / 99



I A defense of the theorem must argue either that a “true” representation
of the citizens’ preferences will give rise to the appropriate vectors or that
there is a set of “background” options sufficiently rich to support the
same vectors, or that certain profiles, such as those in which
considerations of envy or altruism are operative, should not be
considered.
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Mary seashore �M museums �M camping

Sam camping �S museums �S seashore

I The seashore is the only alternative that Mary finds bearable, although
she feels more negative about going to the mountains than to the
museums.

I Each choice is fine with Sam, although he would much prefer going to
the mountains.
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Mary Sam Total
Seashore 20

86 106

Museums 10

93 103

Mountains 9

100 109
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Mary Sam Total

Seashore 20 86 106

Museums 10 93 103

Mountains 9 100 109

For Mary, the difference between the seashore and the mountains crosses the
threshold between the bearable and the intolerable. She feels that her “right
to an emotionally recuperative vacation will be violated by following a
utilitarian scheme.
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Mary Sam Total

Seashore 200 86 286

Museums 100 93 190

Mountains 90 100 190

Mary: My preferences are so intense in comparison with yours that my scale
should range between 0 and 1,000, if yours range between 0 and 100.
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Mary Sam Total

Seashore 20 86 106

Museums 10 93 103

Mountains 9 100 109

Sam: You think that my preferences are rather weak, but the fact is I feel
things quite deeply. I have been brought up in a culture very different from
yours and have been trained to avoid emotional outbursts...But I have strong
feelings all the same.
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Mary Sam Total

Seashore 20 86 106

Museums 10 93 103

Mountains 9 100 109

Sam: I do not think that extra weight should be given in a utilitarian
calculation to those who are capable of more intense preferences. , the
difference between the seashore and the mountains crosses the threshold
between the bearable and the intolerable. She feels that her “right to an
emotionally recuperative vacation will be violated by following a utilitarian
scheme.
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I Is Mary’s preference for the seashore really stronger than Sam’s for the
mountains? Or, is Mary just a more vocal person?

I If some people’s preferences are in fact stronger than others’, how could
we know this?

I Does it make any more sense to compare Sam’s preferences with Mary’s
than it does to compare a dog’s preference for steak bones with a horse’s
preference for oats?

I Even if we answer all these questions affirmatively, is it morally proper
to respond to such information in making social choices?
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Can’t we just wait for psychologists to develop an adequate theory of
emotions?

Don’t we make interpersonal comparisons all the time?

Is there more to emotions than our display of them?
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