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Plan

X Day 1: Decision Theory

X Day 2: From Decisions to Games

X Day 3: Game Models

I Day 4: Modeling Deliberation (in Games)

I Day 5: Backward and Forward Induction, Concluding Remarks
(Language-Based Games/ Variable Frame Theory, Behavioral
Game Theory, . . . )
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Summary

I Game models describe the informational context of a game.

I Interpreting mixed strategies: Epistemic interpretation, purification
theorem

I Game models can be used to characterize different solution
concepts (e.g., iterated strict dominance, iterated weak dominance,
Nash equilibrium, correlated equilibrium,...)
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Next Steps

Moving beyond the basic
model: Belief revision

Modeling deliberation
(in games)
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Strategic Reasoning

“The word eductive will be used to describe a dynamic process by means
of which equilibrium is achieved through careful reasoning on the part of
the players. Such reasoning will usually require an attempt to simulate
the reasoning processes of the other players. Some measure of pre-play
communication is therefore implied, although this need not be explicit. To
reason along the lines “if I think that he thinks that I think...” requires that
information be available on how an opponent thinks.”
ad (pg. 184)

K. Binmore. Modeling Rational Players. Economics and Philosophy, 3,179 - 21, 1987.
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Deliberational Decision Theory

F. Arntzenius. No Regrest, or: Edith Piaf Revamps Decision Theory. Erkenntnis, 68, pgs.
277 - 297, 2008.

J. Joyce. Regret and Instability in Causal Decision Theory. Synthese, 187: 1, pgs. 123 -
145, 2012.

I. Douven. Decision theory and the rationality of further deliberation. Economics and
Philosophy, 18, pgs. 303 - 328, 2002.
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Deliberational Decision Theory

Current Evaluation: If Prt characterizes your beliefs at time t , then at t
you should evaluate each act by its (causal, evidential) expected utility
computed using Prt .

Full Information: You should act on your time-t utility assessments only if
those assessments are based on beliefs that incorporate all the evidence
that is both freely available to you at t and relevant to the question about
what your acts are likely to cause.

Sometimes initial opinions fix actions, but not always (e.g., Murder
Lesion, Psychopath Button)
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Modeling Rational Deliberation

M0 M1 M2 Mf· · ·
!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

Oi(S)
Pj(S′)
· · ·

Oj(T)
Pj(T ′)
· · ·

Oi(S)
Pj(S′)
· · ·

nothing
new

EachMi describes what the decision maker believes, including beliefs
about what they are going to do (at the end of deliberation).
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M0 M1 M2 Mf· · ·
!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

Oi(S)
Pj(S′)
· · ·

Oj(T)
Pj(T ′)
· · ·

Oi(S)
Pj(S′)
· · ·

nothing
new

EachMi describes the decision maker’s current thoughts about what
might happen during a play of the game (her beliefs and “inclinations”).
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Modeling Rational Deliberation

M0 M1 M2 Mf· · ·
!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

What
should
I do?

What
should
I do?

What
should
I do?

nothing
new

Dynamical rules transform the decision maker’s beliefs, given her
evaluation of the available acts. a Nash equilibrium in a game,
probabilities measure over own strategies, categorization of
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Modeling Rational Deliberation

M0 M1 M2 Mf· · ·
!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

What
should
I do?

What
should
I do?

What
should
I do?

nothing
new

Deliberations stops when a “fixed-point” is reached. asdf a sdf asdf asfd
Examples include: component of a Nash equilibrium in a game,
probabilities measure over own strategies, categorization of .
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Deliberation in games

I The Harsanyi-Selten tracing procedure
I Brian Skyrms’ model of “dynamic deliberation”
I Robin Cubitt and Robert Sugden’s “reasoning based expected utility

procedure”
I Johan van Benthem et col.’s “virtual rationality announcements”

Different frameworks, common thought: the “rational solutions” of a
game are the result of individual deliberation about the “rational” action to
choose.
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I What operations transform the models?

I Where does the “new information” come from? What are player i’s
opponents thinking about doing? (“update by emulation”)

I Why keep deliberating?
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Information Feedback

In the simplest case, deliberation is trivial; one calculates expected utility
and maximizes

Information feedback: “the very process of deliberation may generate
information that is relevant to the evaluation of the expected utilities.
Then, processing costs permitting, a Bayesian deliberator will feed back
that information, modifying his probabilities of states of the world, and
recalculate expected utilities in light of the new knowledge.”
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Deliberation in Games

B. Skyrms. The Dynamics of Rational Deliberation. Harvard University Press, 1990.
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B

A

U L R

U 2,1 0,0 U

D 0,0 1,2 U

pA (U)

pB(R)

1

10

pU

qR

A ’s current state of indecision

A ’s current belief about what
B is going to do

Dynamical rule changing
inclinations and beliefs
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Games played by Bayesian deliberators

For each player, the decisions of the other players constitute the relevant
state of the world, which together with her decision, determines their
payoffs.

1. Starting from an initial position, player i calculates her expected
utility and moves by her dynamical rule to a new state of indecision.

2. She knows that the other players are Bayesian deliberators who
have just carried out a similar process.

3. So, she can simply go through their calculations to see their new
states of indecision and update her probabilities for their acts
accordingly (update by emulation).
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Let G be a strategic game for two players with n strategies and 〈rij , cij〉 be
the payoff matrix for G.

Pcol(t), Prow(t) are row and columns states of indecision at stage t of the
deliberational process.

For example, a state of indecision for the row player is

Prow(t) = 〈p1
row(t), . . . , p

n
row(t)〉

where p j
row(t) is the probability that row assigns to strategy j at time t .
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EUrow(i, t) =
n∑

k=1

pk
col(t) · rik

SQrow(t) =
n∑

i=1

p i
row(t) · EUrow(i, t)

Covrow(i, t) = max{EUrow(i, t) − SQrow(t), 0}

Eric Pacuit 15



EUrow(i, t) =
n∑

k=1

pk
col(t) · rik

SQrow(t) =
n∑

i=1

p i
row(t) · EUrow(i, t)

Covrow(i, t) = max{EUrow(i, t) − SQrow(t), 0}

Eric Pacuit 15



EUrow(i, t) =
n∑
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Prow(t + 1) = D(Prow(t),Pcol(t))

Dynamical rule State of indecision Beliefs about the state of nature
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EUcol(i, t) =
n∑

k=1

pk
row(t) · cki

SQcol(t) =
n∑

i=1

p i
col(t) · EUcol(i, t)

Covcol(i, t) = max{EUcol(i, t) − SQcol(t), 0}
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Dynamical Rules

Nash: p i
row(t + 1) =

k ·p i
row(t)+Covrow(i,t)

k+
∑

i Covrow(i,t)

Bayes: p i
row(t + 1) = p i

row(t) +
1
k · p

i
row(t) ·

EUrow(i,t)−SQrow(t)
SQrow(t)

Bayes2: p i
row(t + 1) = p i

row(t) ·
EUrow(i,t)
SQrow(t)

k > 0 is an index of caution (slowing down the rate of convergence)
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Bob

A
nn

U L R

U 2,1 0,0 U

D 0,0 1,2 U

PA = 〈0.2, 0.8〉 and PB = 〈0.4, 0.6〉

EU(U) = 0.4 · 2 + 0.6 · 0 = 0.8
EU(D) = 0.4 · 0 + 0.6 · 1 = 0.6
EU(L) = 0.2 · 1 + 0.8 · 0 = 0.2
EU(R) = 0.2 · 0 + 0.8 · 2 = 1.6
SQA = 0.2 · EU(U) + 0.8 · EU(D) = 0.2 · 0.8 + 0.8 · 0.6 = 0.64
SQB = 0.4 · EU(L) + 0.6 · EU(R) = 0.4 · 0.2 + 0.6 · 1.6 = 1.04
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Bob

A
nn

U L R

U 2,1 0,0 U

D 0,0 1,2 U

PA = 〈0.2, 0.8〉 and PB = 〈0.1, 0.9〉
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Nash Dynamics

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bob's probability of R

0.0
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0.6

0.7
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Normal form vs. Extensive form

A

B

-1,-1 1,1

0,0

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 -1,-1 1,1 U

a2 0,0 0,0 U

(Cf. the various notions of sequential equilibrium) On the normal form,
there are imperfect equilibria accessible by Darwin dynamics.

This equilibria is not accessible on the tree: Bob calculates the expected
utility at his information set (so, PB(a1 | a1) = 1 and PB(a2 | a1) = 0).
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Normal form vs. Extensive form

A

B

0,0 2,2

1,1

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 0,0 2,2 U

a2 1,1 1,1 U

On the normal form, there are imperfect equilibria accessible by Darwin
dynamics (e.g., PA = 〈0, 1〉, PB = 〈0.97, 0.03〉).

This equilibria is not accessible on the tree: Bob calculates the expected
utility at his information set (so, PB(a1 | a1) = 1 and PB(a2 | a1) = 0).
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Normal form vs. Extensive form

A

B

0,0 2,2

1,1

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 0,0 2,2 U

a2 1,1 1,1 U

On the normal form, there are imperfect equilibria accessible by Darwin
dynamics (e.g., PA = 〈0, 1〉, PB = 〈0.97, 0.03〉).

This equilibria is not accessible on the tree: Bob calculates the expected
utility at his information set (so, PB(a1 | a1) = 1 and PB(a2 | a1) = 0).
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Update by Emulation

I Nash and Bayes
I Nash vs. Bayes
I Fixed beliefs
I Uncertainty about the other player’s beliefs
I Social networks
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Nash vs. Bayes, I
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Nash dynamics
Bayesian dynamics
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Nash vs. Bayes, II
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Fixed Beliefs
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Errors
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Errors
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Learning to Play

Theorem. If players start with subjectively rational strategies, and if their
individual subjective beliefs regarding opponents’ strategies are
“compatible with truly chosen strategies”, then they must converge in a
finite amount of time to play according to an ε-Nash in the repeated
game.

E. Kalai and E. Lehrer. Rational Learning Leads to Nash Equilibrium. Econometrica, 61:5,
pgs. 1019 - 1045, 1993.

Y. Shoham, R. Powers and T. Granager. If multi-agent learning is the answer, what is the
question?. Artificial Intelligence, 171(7), pgs. 365 - 377, 2007.

Eric Pacuit 34



Modeling Deliberation in Games

I Characterize outcomes in terms of accessibility and/or stability

I Relation with correlated equilibrium (correlation through rational
deliberation)

I Comparison with other models of deliberation in games (categorize
pure strategies)

I Generalize the basic model: extensive games (with imperfect
information), imprecise probabilities, more than two players

I Weaken the common knowledge assumptions (payoffs, beliefs,
dynamical rule, updating by emulation)

I Deliberation in decision theory (“deliberation crowds out prediction”,
logical omniscience)
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Imprecise Priors

It is assumed that the players precise states of indecision are common
knowledge at the onset of deliberation.

Imprecise Prior: Each players prior is a convex set of probability
measures over her actions space.

Restrict attention to games with two players where each players has two
strategies.
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A precise state of indecision for the row player is

Prow(t) = 〈p1
row(t), . . . , p

n
row(t)〉

where p j
row(t) is the probability that row assigns to her strategy j at time t .

An imprecise state of indecision has p1
row = [lp, up] and

p2
row = [1 − up, 1 − lp]. For example, if p1

row = [0.6, 0.7], then
p2

row = [0.3, 0.4].

Row (Col) has an expected utility for each probability measure in Col’s
(Row’s) interval. Row (Col) need only compute expected utilities with
respect to the endpoints of columns interval.
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col

ro
w

U L R

U 0,0 1,1 U

D 1,1 0,0 U

pU
row(0) = [0.6, 0.8] and pL

col(0) = [0.6, 0.9]

EUrow(U, 0) = [0.1, 0.4]
EUrow(D, 0) = [0.6, 0.9]
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col

ro
w

U L R

U 0,0 1,1 U

D 1,1 0,0 U

pU
row(0) = [0.6, 0.8] and pL

col(0) = [0.6, 0.9]

EUrow(U, 0) = [0.1, 0.4]
EUrow(D, 0) = [0.6, 0.9]
How should you calculate Prow(1) and Pcol(1)?
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1. pU
row = 0.6, pL

col = 0.6: SQrow = 0.30, Covrow(U) = 0,
Covrow(D) = 0.30. pU

row(1) =
0.6+0
1+0.3 = 0.4615

2. pU
row = 0.6, pL

col = 0.9: SQrow = 0.40, Covrow(U) = 0,
Covrow(D) = 0.20. pU

row(1) =
0.6+0
1+0.4 = 0.4286

3. pU
row = 0.8, pL

col = 0.6: SQrow = 0.32, Covrow(U) = 0,
Covrow(D) = 0.28. pU

row(1) =
0.8+0

1+0.32 = 0.6061

4. pU
row = 0.8, pL

col = 0.9: SQrow = 0.20, Covrow(U) = 0,
Covrow(D) = 0.7. pU

row(1) =
0.8+0
1+0.7 = 0.4706

pU
row = [0.4286, 0.6061]
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I The area of a rectangle of indecision need not be preserved by
deliberational dynamics

I For example, players may start out with imprecise prior probabilities
and deliberation results in point probabilities (E.g., Figure 3.4, 3.5 on
pgs. 68, 69)

I The pure mixed strategy in the game of Chicken is not stable for
precise probabilities. Starting from [0.51, 0.49], [0.51, 0.49], the orbit
explodes to a state of mutual total bewilderment.

I In matching pennies, the mixed strategy is strongly stable. However,
starting from [0.51, 0.49], [0.51, 0.49], the imprecision explodes to
cover the whole space (see Figure 3.8, pg. 72)

I When analyzed in terms of precise priors, the pure coordination
game and Chicken were both seen to be situations in which
coordination could arise spontaneously. This is not true when
starting with imprecise probabilities.
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J. McKenzie Alexander. Local interactions and the dynamics of rational deliberation.
Philosophical Studies 147 (1), 2010.
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Consider a social network 〈N,E〉 (connected graph)

Convention: If there is a directed edge from A to B, then A always plays
row and B always play column, and the interactions of Row and Column
are symmetric in the available strategies.

Let νi = {i1, . . . ij} be i’s neighbors

p′a,b(t + 1) is represents the incremental refinement of player a’s state of
indecision given his knowledge about player b ’s state of indecision (at
time t + 1).

Pool this information to form your new probabilities:

pi(t + 1) =
k∑

j=1

wi,ij p
′
i,ij (t + 1)
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Billy
Boxing Ballet

Maggie
Boxing (2,1) (0,0)
Ballet (0,0) (1,2)

Fig. 7 The game of Battle of the Sexes.

80.7, 0.3<
80.7, 0.3<

80.7, 0.3<
80.4, 0.6<

80.4, 0.6<

80.4, 0.6<
(a) Initial conditions

81., 0<
81., 0<

81., 0<
80.4134, 0.5866<

80, 1.<

80, 1.<
(b) t = 1,000,000

Fig. 8 Battle of the Sexes played by
Nash deliberators (k = 25) on two cy-
cles connected by a bridge edge (val-
ues rounded to the nearest 10�4).

is just the opposite of that of players 1, 2, 3, and 8; hence the overall population state is
stable under the Nash dynamics.

4. Battle of the Sexes

Turning now from anti-coordination to coordination games, consider the game of Battle
of the Sexes as defined by the payoff matrix in figure 7. Simulations of the deliberational
dynamics for both Nash and Bayesian deliberators on a cycle of length three reveal that,
on that simple network, the population will coordinate on either All Go Boxing or All Go
To The Ballet. It is also straightforward to predict which of these two outcomes will come
about: look at the total aggregate probability assigned to Boxing and Ballet in the states of
indecision for the population. Whichever activity has more probability assigned to it will be
the activity the population converges upon.

The predictive success of that rule depends on the topology, though. Consider a graph
defined by the sequence of edges 1 ! 2 ! 3 ! 1, 4 ! 5 ! 6 ! 4 and 1 ! 4 (see figure 8).
If each player in the left “lobe” of graph has the state of indecision h.7, .3i and each player in
the right “lobe” has the state of indecision h.4, .6i, the total aggregate probability assigned to
Boxing in the population is 3.3, with Ballet receiving an aggregate of 2.7. Yet if each player
is a Nash deliberator with an index of caution k = 25, the left lobe converges to Boxing and
most of the right lobe converges to Ballet. This makes sense, given the topology, but it also
shows that the predictive rule which works on a simple cycle fails to work here.

It’s worth investigating what happens on more realistic and complex social networks.
Consider, then, the following sequence of simulations: for one thousand trials, generate a
random directed graph gi consisting of twenty vertices, and a random assignment of states
of indecision hpi1 , . . . ,pi20i to each vertex in gi.18 Then, for each of these initial conditions,
calculate the state resulting from stepping the model forward 1,000,000 iterations under the
Nash dynamics. Then do the same thing, except under Bayesian dynamics.

18 The random graphs were generated using the following procedure: each of the 190 possible edges had a
20% chance of being included. If the resulting graph was connected, it was used; if the resulting graph was
disconnected, it was thrown out and a new candidate was generated. The same graph was used for the ith trial
for both Nash and Bayes deliberators, as well as the same initial conditions.
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Deliberation in games

I The Harsanyi-Selten tracing procedure
I Brian Skyrms’ model of “dynamic deliberation”
I Robin Cubitt and Robert Sugden’s “reasoning based expected utility

procedure”
I Johan van Benthem et col.’s “virtual rationality announcements”

EP. Dynamic models of rational deliberation in games. in Strategic Reasoning, van Ben-
them, Gosh, and Verbrugge, ed., 2015.
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Reasoning Based Expected Utility Procedure

R. Cubitt and R. Sugden. The reasoning-based expected utility procedure. Games and
Economic Behavior, 2010.
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Reasoning-Based Solution Concepts

A categorization is a ternary partition of the players choices (rather than
a binary partition of what is in and what is out): strategies are
accumulated, deleted or neither.

Example: RBEU (reasoning based expected utility):
I accumulate strategies that maximize expected utility for every

possibly probability distribution
I delete strategies that do not maximize probability against any

probability distribution
I accumulated strategies must receive positive probability, deleted

strategies must receive zero probability
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RBEU: Example

L R

U 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

L R

U 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

L R

U 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

S+ = {L}
S− = {B}

S+ = {L ,R}
S− = {B ,M1}

S+ = {L ,R}
S− = {B ,M1}
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RBEU Example 2

l r

u 1,1 0,0

d 0,0 0,0

l r

u 1,1 0,0

d 0,0 0,0

S+ = {L}
S− = {B}

S+ = {L ,R}
S− = {B ,M1}
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l r

u 1,1 0,0
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l r

u 1,1 1,0

d 1,0 0,1

S+ = {u, l}
S− = ∅

S+ = {L ,R}
S− = {B ,M1}
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RBEU Example 3

L R
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L R
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R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of common
knowledge of rationality. Economics and Philosophy, 2015.
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Deliberation in games

I The Harsanyi-Selten tracing procedure
I Brian Skyrms’ model of “dynamic deliberation”
I Robin Cubitt and Robert Sugden’s “reasoning based expected utility

procedure”
I Johan van Benthem et col.’s “virtual rationality announcements”

EP. Dynamic models of rational deliberation in games. in Strategic Reasoning, van Ben-
them, Gosh, and Verbrugge, ed., 2015.
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Tomorrow: Backward and Forward Induction,
Concluding Remarks
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