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Plan

X Day 1: Decision Theory

X Day 2: From Decisions to Games

I Day 3: Game Models

I Day 4: Modeling Deliberation (in Games)

I Day 5: Backward and Forward Induction, Concluding Remarks
(Language-Based Games/ Variable Frame Theory, Behavioral
Game Theory, . . . )
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Game Models

I A game is a partial description of a set (or sequence) of
interdependent (Bayesian) decision problems.

A game will not normally contain enough information to determine
what the players believe about each other.

I A model of a game is a completion of the partial specification of the
Bayesian decision problems and a representation of a particular
play of the game.

I There are no special rules of rationality telling one what to do in the
absence of degrees of belief except: decide what you believe, and
then maximize (subjective) expected utility.
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Models of Games

Suppose that G is a game.

I Outcomes of the game: S = Πi∈NSi

I A profile is a vector ~s ∈ S, specifying an action for each player
I Player i’s partial beliefs (or conjecture): Pi ∈ ∆(S−i)

∆(X) is the set of probabilities measures over X
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Models of Games, continued

G = 〈N, (Si , ui)i∈N〉 is a strategic (form of a) game.

I W is a set of possible worlds (possible outcomes of the game)

I s is a function s : W → Πi∈NSi , write si(w) for the ith component of
s(w)

I If ~s ∈ Πi∈NSi , then [~s] = {w | s(w) = ~s}; if si ∈ Si , then
[si] = {w | si(w) = si}; and if X ⊆ S, [X ] =

⋃
s∈X [s].

I ex ante beliefs: For each i ∈ N, let Pi ∈ ∆(W) (the set of probability
measures on W ). Two assumptions:
• [s] is measurable for all strategy profiles s ∈ S
• Pi([si]) > 0 for all si ∈ Si
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ex interim beliefs: Pi,w ∈ ∆(S−i)

I ...given player i’s choice: Pi,w(·) = Pi(· | [si(w)])

I ...given all player i knows: Pi,w(·) = Pi(· | Ki), Ki ⊆ [si(w)]

I ...given all player i fully believes: Pi,w(·) = Pi(· | Bi), Bi ⊆ [si(w)]

Expected utility of strategy si ∈ Si : Given P ∈ ∆(S−i),

EUi,P(si) =
∑

s−i∈S−i

P(s−i)ui(si , s−i)
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An Example
Bob

A
nn

U L R

U 1,2 0,0 U

D 0,0 2,1 U

Ann’s choice is optimal
(given her information)

Bob’s choice is optimal
(given her information)

Ann considers it possible
Bob is irrational

1 · PA (L) + 0 · PA (R) ≥ 0 · PA (L) + 2 ·
PA (R)
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For any P ∈ ∆(S−i) and si ∈ Si , EUi,P(si) =
∑

s−i∈S−i
P(s−i)ui(si , s−i)

For any w ∈ W and si ∈ Si , EUi,w(si) =
∑

s−i∈S−i
Pi,w([s−i])ui(si , s−i)

Rati = {w | EUi,w(si(w)) ≥ EUi,w(si) for all si ∈ Si}

Each P ∈ ∆(W) is associated with PS ∈ ∆(S) as follows: for all s ∈ S,
PS(s) = P([s])

A mixed strategy σ ∈ Πi∈N∆(Si), Pσ ∈ ∆(S), Pσ(s) = σ1(s1) · · ·σn(sn)
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Characterizing Nash Equilibria

Theorem (Aumann). σ is a Nash equilibrium of G iff there exists a model
MG = 〈W , (Pi)i∈N , s〉 such that:
I for all i ∈ N, Rati = W ;
I for all i, j ∈ N, Pi = Pj ; and
I for all i ∈ N, PS

i = Pσ.

Eric Pacuit 9



Correlation

Correlation: Players can improve their expected value by correlating
their choices on an “outside signal”

With more than 2 players...

A player may believe that (some of) the other players strategy
choices are independent or correlated.

Two players can agree or disagree on the probabilities that the
assign to a third player’s choice of strategy.

Eric Pacuit 10



Correlated Strategies

L R
U 2, 1 0, 0
D 0, 0 1, 2

I Three Nash equilibria:
• (U, L): the payoff is (2, 1)
• (D,R): the payoff is (1, 2)
• ([ 2

3 (U), 1
3 D], [ 1

3 (L), 2
3 (R)]): the payoff is ( 2

3 ,
2
3 )

Each player conducts a private, independent lottery to choose their
strategy.

Conduct a public lottery: flip a fair coin and follow the strategy
(H ⇒ (U, L), T ⇒ (D,R)). The payoff is (1.5, 1.5).

Eric Pacuit 11



Correlated Strategies

L R
U 2, 1 0, 0
D 0, 0 1, 2

I Three Nash equilibria:
• (U, L): the payoff is (2, 1)
• (D,R): the payoff is (1, 2)
• ([ 2

3 (U), 1
3 D], [ 1

3 (L), 2
3 (R)]): the payoff is ( 2

3 ,
2
3 )

I Mixed Strategies: Each player conducts a private, independent
lottery to choose their strategy.

Conduct a public lottery: flip a fair coin and follow the strategy
(H ⇒ (U, L), T ⇒ (D,R)). The payoff is (1.5, 1.5).

Eric Pacuit 11



Correlated Strategies

L R
U 2, 1 0, 0
D 0, 0 1, 2

L R
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Two extremes:

1. Completely private, independent lotteries

2. A single, completely public lottery

What about: a public lottery, but reveal only partial information about the
outcome to each of the players?
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L R
U 6, 6 2, 7
D 7, 2 0, 0

L R
U 0.5 0
D 0 0.5

I Three Nash equilibria:
• (U,R): the payoff is (2, 7)
• (D, L): the payoff is (7, 2)
• ([ 2

3 (U), 1
3 D], [ 2

3 (L), 1
3 (R)]): the payoff is (4 2

3 , 4
2
3 )

After conducting the lottery, an outside observer provides Ann with a
recommendation to play the first component of the profile that was
chosen, and Bob the second component.

The expected payoff is 1
3 (6, 6) + 1

3 (2, 7) + 1
3 (7, 2) = (5, 5) (which is

outside the convex hull of the Nash equilibria)

Eric Pacuit 13



L R
U 6, 6 2, 7
D 7, 2 0, 0

L R
U 1/3 1/3
D 1/3 0

I Three Nash equilibria:
• (U,R): the payoff is (2, 7)
• (D, L): the payoff is (7, 2)
• ([ 2

3 (U), 1
3 D], [ 2

3 (L), 1
3 (R)]): the payoff is (4 2

3 , 4
2
3 )

I After conducting the lottery, an outside observer provides Ann with a
recommendation to play the first component of the profile that was
chosen, and Bob the second component.

The expected payoff is 1
3 (6, 6) + 1

3 (2, 7) + 1
3 (7, 2) = (5, 5) (which is

outside the convex hull of the Nash equilibria)

Eric Pacuit 13



L R
U 6, 6 2, 7
D 7, 2 0, 0

L R
U 1/3 1/3
D 1/3 0

I Three Nash equilibria:
• (U,R): the payoff is (2, 7)
• (D, L): the payoff is (7, 2)
• ([ 2

3 (U), 1
3 D], [ 2

3 (L), 1
3 (R)]): the payoff is (4 2

3 , 4
2
3 )

I After conducting the lottery, an outside observer provides Ann with a
recommendation to play the first component of the profile that was
chosen, and Bob the second component.

I The expected payoff is 1
3 (6, 6) + 1

3 (2, 7) + 1
3 (7, 2) = (5, 5) (which is

outside the convex hull of the Nash equilibria)

Eric Pacuit 13



Correlation

Correlation: Players can improve their expected value by correlating
their choices on an “outside signal”

With more than 2 players...

I A player may believe that (some of) the other players strategy
choices are independent or correlated.

I Two players can agree or disagree on the probabilities that the
assign to a third player’s choice of strategy.
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Characterizing Correlated Equilibrium

Theorem (Aumann). σ is a correlated equilibrium of G iff there exists a
modelMG = 〈W , (Pi)i∈N , s〉 such that:
I for all i ∈ N, Rati = W ; and
I for all i ∈ N, PS

i = σ.
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Rationalizability

A best reply set (BRS) is a sequence (B1,B2, . . . ,Bn) ⊆ S = Πi∈NSi

such that for all i ∈ N, and all si ∈ Bi , there exists µ−i ∈ ∆(B−i) such that
si is a best response to µ−i : I.e.,

bi = arg max
si∈Si

EUi,µ−i (si)

.

Eric Pacuit 16



2

1

b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 5, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 0 0, -2 0, 0 10, -1

I (a2, b2) is the unique Nash equilibria, hence ({a2}, {b2}) is a BRS
I ({a1, a3}, {b1, b3}) is a BRS
I ({a1, a2, a3}, {b1, b2, b3}) is a full BRS

Eric Pacuit 17
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Theorem (Bernheim; Pearce; Brandenburger and Dekel; . . . ).
(B1,B2, . . . ,Bn) is a BRS for G iff there exists a model
MG = 〈W , (Pi)i∈N , s〉 such that for all i ∈ N, Rati = W and
[B1 × · · · × Bn] = W .
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Bob
A

nn
U L R

U 2,2 4,1 U

D 1,4 3,3 U

Game 1

Bob

A
nn

U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: D strictly dominates U and R strictly dominates L .

Game 2: U strictly dominates D, and after removing D, L strictly
dominates R.

Theorem. The projection of any event where the players are rational and
there is common belief of rationality are strategies that survive iterative
removal of strictly dominated strategies (and, conversely...).
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nn
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U 2,2 4,1 U

D 1,4 3,3 U

Game 1

Bob

A
nn

U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U strictly dominates D and L strictly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly
dominates R.

Theorem. In all models where the players are rational and there is
common belief of rationality, the players choose strategies that survive
iterative removal of strictly dominated strategies (and, conversely...).

Eric Pacuit 19



Comparing Dominance Reasoning and MEU

G = 〈N, (Si)i∈N , (ui)i∈N〉

X ⊆ S−i (a set of strategy profiles for all players except i)

s, s′ ∈ Si , s strictly dominates s′ with respect to X provided

∀s−i ∈ X , ui(s, s−i) > ui(s′, s−i)

p ∈ ∆(X), s is a best response to p with respect to X provided

∀s′ ∈ Si , EU(s, p) ≥ EU(s′, p)
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Bob

A
nn

U L R

U 5,∗ 1,∗ U

M 1,∗ 5,∗ U

D 2,∗ 2,∗ U

D is strictly dominated by (0.5U, 0.5M).
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Strict Dominance and MEU

Proposition. Suppose that G = 〈N, (Si)i∈N , (ui)i∈N〉 is a strategic game
and X ⊆ S−i . A strategy si ∈ Si is strictly dominated (possibly by a mixed
strategy) with respect to X iff there is no probability measure p ∈ ∆(X)
such that si is a best response to p.
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Important Issue: Correlated Beliefs

x l r
u 1,1,3 1,0,3
d 0,1,0 0,0,0

y l r
u 1,1,2 1,0,0
d 0,1,0 1,1,2

z l r
u 1,1,0 1,0,0
d 0,1,3 0,0,3

I Note that y is not strictly dominated for Charles.
I It is easy to find a probability measure p ∈ ∆(SA × SB) such that y

is a best response to p. Suppose that p(u, l) = p(d, r) = 1
2 . Then,

EU(x, p) = EU(z, p) = 1.5 while EU(y, p) = 2.
I However, there is no probability measure p ∈ ∆(SA × SB) such that

y is a best response to p and p(u, l) = p(u) · p(l).
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x l r
u 1,1,3 1,0,3
d 0,1,0 0,0,0

y l r
u 1,1,2 1,0,0
d 0,1,0 1,1,2

z l r
u 1,1,0 1,0,0
d 0,1,3 0,0,3

I To see this, suppose that a is the probability assigned to u and b is
the probability assigned to l. Then, we have:

• The expected utility of y is 2ab + 2(1 − a)(1 − b);
• The expected utility of x is 3ab + 3a(1 − b) = 3a(b + (1 − b)) = 3a;

and
• The expected utility of z is

3(1 − a)b + 3(1 − a)(1 − b) = 3(1 − a)(b + (1 − b)) = 3(1 − a).
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Let P ∈ ∆(X) be a probability measure, the support of P is
supp(P) = {x ∈ X | P(x) > 0}.

A probability measure P ∈ ∆(X) is said to be a full support probability
measure on X provided supp(P) = X .

Eric Pacuit 25



Bob

A
nn

U L R

U 3,3 1,1 U

D 2,2 2,2 U

Is R rationalizable?

There is no full support probability such that R is a best response
Should Ann assign probability 0 to R or probability > 0 to R?
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Strategic Reasoning and Admissibility

“The argument for deletion of a weakly dominated strategy for player i is
that he contemplates the possibility that every strategy combination of
his rivals occurs with positive probability. However, this hypothesis
clashes with the logic of iterated deletion, which assumes, precisely, that
eliminated strategies are not expected to occur.”

Mas-Colell, Whinston and Green. Introduction to Microeconomics. 1995.
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A Puzzle

R. Cubitt and R. Sugden. Rationally Justifiable Play and the Theory of Non-cooperative
games. Economic Journal, 104, pgs. 798 - 803, 1994.

R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of common
knowledge of rationality. Manuscript, 2011.
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Bob
A

nn
U L R

U 1,1 0,0 U
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Bob
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U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly
dominates R.

Theorem. The projection of any event where the players are rational and
there is common belief of rationality are strategies that survive iterative
removal of strictly dominated strategies (and, conversely...).

Eric Pacuit 29



Bob
A

nn
U L R

U 1,1 0,0 U

D 0,0 0,0 U

Game 1

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: U weakly dominates D, and after removing D, L strictly
dominates R.

Theorem. The projection of any event where the players are rational and
there is common belief of rationality are strategies that survive iterative
removal of strictly dominated strategies (and, conversely...).

Eric Pacuit 29



Bob
A

nn
U L R

U 1,1 0,0 U

D 0,0 0,0 U

Game 1

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: U weakly dominates D, and after removing D, L strictly
dominates R.

Theorem. The projection of any event where the players are rational and
there is common belief of rationality are strategies that survive iterative
removal of strictly dominated strategies (and, conversely...).

Eric Pacuit 29



Bob
A

nn
U L R

U 1,1 0,0 U

D 0,0 0,0 U

Game 1

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: U weakly dominates D, and after removing D, L strictly
dominates R.

Theorem. The projection of any event where the players are rational and
there is common belief of rationality are strategies that survive iterative
removal of strictly dominated strategies (and, conversely...).

Eric Pacuit 29



Bob
A

nn
U L R

U 1,1 0,0 U

D 0,0 0,0 U

Game 1

Bob

A
nn

U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: But, now what is the reason for not playing D?

Theorem. The projection of any event where the players are rational and
there is common belief of rationality are strategies that survive iterative
removal of strictly dominated strategies (and, conversely...).

Eric Pacuit 29



Bob
A

nn
U L R
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Game 1

Bob
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U L R

U 1,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U weakly dominates D and L weakly dominates R.

Game 2: But, now what is the reason for not playing D?

Theorem (Samuelson). There is no model of Game 2 satisfying common
knowledge of rationality (where rationality incorporates weak
dominance). adfa sfas df adsf asd fa
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L ,R}

B , L B ,R B , {L ,R}

{T ,B}, L {T ,B},R {T ,B}, {L ,R}

There is no model of this game with common knowledge of admissibility.
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Common Knowledge of Admissibility
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The ”full” model of the game: B is not admissible given Ann’s information
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L ,R}

B , L B ,R B , {L ,R}

{T ,B}, L {T ,B},R {T ,B}, {L ,R}

What is wrong with this model? asdf ad fa sdf a fsd asdf adsf adfs
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L ,R}

B , L B ,R B , {L ,R}

{T ,B}, L {T ,B},R {T ,B}, {L ,R}

Privacy of Tie-Breaking/No Extraneous Beliefs: If a strategy is
rational for an opponent, then it cannot be “ruled out”.
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Summary

I Game models describe the informational context of a game.

I Game models can be used to characterize different solution
concepts (e.g., iterated strict dominance, iterated weak dominance,
Nash equilibrium, correlated equilibrium,...)
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Tomorrow: Deliberation in Games
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