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Information

Email: epacuit@umd.edu

Website: pacuit.org/esslli2015/reasgames

Reading: plato.stanford.edu/entries/epistemic-game

Game Theory: www.game-theory-class.org
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Plan

I Day 1: From Decision Theory to Game Theory

I Day 2: Games and Game Models

I Day 3: Modeling Deliberation (in Games)

I Day 4: Backward and Forward Induction

I Day 5: Spill Over, Concluding Remarks (Language-Based Games/
Variable Frame Theory, Behavioral Game Theory, . . . )
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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.

dev.pacuit.org/games/avg
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The Guessing Game, again

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.
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Traveler’s Dilemma

1. You and your friend write down an integer between 2 and 100
(without discussing).

2. If both of you write down the same number, then both will receive
that amount in Euros from the airline in compensation.

3. If the numbers are different, then the airline assumes that the
smaller number is the actual price of the luggage.

4. The person that wrote the smaller number will receive that amount
plus 2 EUR (as a reward), and the person that wrote the larger
number will receive the smaller number minus 2 EUR (as a
punishment).

Suppose that you are randomly paired with another person here at
ESSLLI. What number would you write down?

dev.pacuit.org/games/td
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Decision Theory
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Decision Theory

Rational decision making is associated with both the capacity to order
outcomes and to choose from the top of the order.
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Are Walter’s decisions rational ?

• What are his preferences?

• What does he believe?

• What type of choice problem is he facing?
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Context of a decision

Individual decision-making
(against nature)

• E.g., Gambling

Individual decision making in
interaction

• E.g., Playing chess
• E.g., Voting in an election

Collective decision making

• E.g., Carrying a piano
• E.g., Voting in an election
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Preference, Choice, and Utility

I Representing preferences: relations, preference axioms

I Revealed preference theory: WARP, Sen’s α and β, Revelation
Theorem

I Utility: Ordinal vs. cardinal utility, interval scale, ratio scale

I Expected utility theory: (probability), von Neumann-Morgenstern
Theorem, Savage’s Theorem, Aumann-Anscombe’s Decision Theory,
Allais paradox, Ellsberg paradox, . . .

I Interpersonal comparison of utilities
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Decision Problems

In many circumstances the decision maker doesn’t get to choose
outcomes directly, but rather chooses an instrument that affects what
outcome actually occurs.

Choice under

I certainty: highly confident about the relationship between actions
and outcomes

I risk: clear sense of possibilities and their likelihoods

I uncertainty: the relationship between actions and outcomes is so
imprecise that it is not possible to assign likelihoods
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Decision Problems

=⇒

MaxRegretExpUtil

T

B

w1 w2 · · · wn−1 wn

max({u(A(wi ))−max({u(Ai (wi )) | Ai ∈ Act})
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Decision Problems

=⇒

MaxRegretExpUtil

T

B

w1 w2 · · · wn−1 wn

An act is a function A : W → O
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Strict Dominance

=⇒

MaxRegretExpUtil

T

B

w1 w2 · · · wn−1 wn

> > > > >

∀ w ∈W , u(A(w)) > u(B(w))
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Weak Dominance

=⇒

MaxRegretExpUtil

T

B

w1 w2 · · · wn−1 wn

≥ ≥ > ≥ >

∀ w ∈W , u(A(w)) ≥ u(B(w)) and ∃ w ∈W , u(A(w)) > u(B(w))
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MaxMin (Security)

=⇒

MaxRegretMin

T

B

w1 w2 · · · wn−1 wn

min({A(w) | w ∈W })
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MaxMax

=⇒

MaxRegretMax

T

B

w1 w2 · · · wn−1 wn

max({A(w) | w ∈W })
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Maximize (Subjective) Expected Utility

=⇒

MaxRegretExpUtil

T

B

w1 w2 · · · wn−1 wn

∑
w∈W PA(w) ∗ u(A(w))
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MinMax Regret

=⇒

MaxRegret

T

B

w1 w2 · · · wn−1 wn

max({u(A(wi ))−max({u(Ai (wi )) | Ai ∈ Act})
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I Maximizing

I Utility/Preferences

I Probability
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Maximizing

“The formulation of maximizing behavior in economics has often
paralleled the modeling of maximization in physics and related
disciplines.

But maximizing behavior differs from nonvolitional
maximization because of the fundamental relevance of the choice act,
which has to be placed in a central position in analyzing maximizing
behavior. A person’s preferences over comprehensive outcomes (including
the choice process) have to be distinguished from the conditional
preferences over culmination outcomes given the act of choice.”(pg. 745)

A. Sen. Maximization and the Act of Choice. Econometrica, Vol. 65, No. 4, 1997, 745
- 779.
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You arrive at a garden party and can readily identify the most
comfortable chair. You would be delighted if an imperious host were to
assign you that chair. However, if the matter is left to your own choice,
you may refuse to rush to it.

You select a “less preferred” chair. Are you
still a maximizer? Quite possibly you are, since your preference ranking
for choice behavior may well be defined over “comprehensive outcomes”,
including choice processes (in particular, who does the choosing) as well
as the outcomes at culmination (the distribution of chairs).

To take another example, you may prefer mangoes to apples, but refuse
to pick the last mango from a fruit basket, and yet be very pleased if
someone else were to “force” that last mango on you. ” (Sen, pg. 747)
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Preferences

Preferring or choosing x is different than “liking” x or “having a taste for
x”: one can prefer x to y but dislike both options

Preferences are always understood as comparative: “preference” is more
like “bigger” than “big”

Revealed Preferences: Ann is said to have a preference for x over y iff
Ann chooses x over y where choice is conceived of as overt behavior.

Deliberative Preferences: A person deliberates and (ideally) ranks all
the possible “outcomes”
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Orderings

Let X be the set of outcomes (or options) and � an ordering
(�⊆ X × X ).

Given two outcomes x , y ∈ X , there are four possibilities:

1. x � y and y 6� x : The agent strictly prefers x to y (x � y)

2. y � x and x 6� y : The agent strictly prefers y to x (y � x)

3. x � y and y � x : The agent is indifferent between x and y (x ≈ y)

4. x 6� y and y 6� x : The agent cannot compare x and y (x ⊥ y)
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Utility Functions

A utility function on a set X is a function u : X → R

A utility function u : X → R represents an ordering � on X provided
for all x , y ∈ X , x � y iff u(x) ≥ u(y).
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Ordinal Utility Theory: Axioms

1. Completeness: The preference ordering is complete: the decision
maker call always rank options (for any two options x and y , either
the decision maker (1) strictly prefers x to y , (2) strictly prefers y
to x or (3) is indifferent between x and y).

2. Transitivity: Weak preference (and hence strict and indifference) is
transitive

Eric Pacuit 19
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Ordinal Utility Theory

Theorem. Suppose that X is finite and � is a complete and transitive
ordering over X . Then there is a utility function u : X → R that
represents �.

Eric Pacuit 20



Cardinal Utility Theory

x � y � z is represented by both (3, 2, 1) and (1000, 999, 1), so we
cannot say y whether is “closer” to x than to z .

Key idea: Ordinal preferences over lotteries allows us to infer a cardinal
scale (with some additional axioms).

John von Neumann and Oskar Morgenstern. The Theory of Games and Economic
Behavior. Princeton University Press, 1944.
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[1 : B] ∼ [p : R, 1− p : S ]
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A Choice
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A Choice

R

B

W

S

T or G?

B

R S

T G

p 1− p

u(B) = p ∗ 1 + (1− p) ∗ 0 = p
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Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted [p1 : x1, p2 : x2, . . . , pn : xn] where
for i = 1, . . . , n, xi ∈ X and pi ∈ [0, 1], and

∑
i pi = 1.

Let L be the set of (simple) lotteries over X . We identify elements
x ∈ X with the lottery [1 : x ].
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Axioms

Preference � is reflexive, transitive and complete

Compound Lotteries The decision maker is indifferent between every
compound lottery and the corresponding
simple lottery.

Independence For all L1, L2, L3 ∈ L and a ∈ (0, 1], L1 � L2
if, and only if,

[L1 : a, L3 : (1− a)] � [L2 : a, L3 : (1− a)].

Continuity For all L1, L2, L3 ∈ L and a ∈ (0, 1],

if L1 � L2 � L3, then there exists a, b ∈ (0, 1)

such that [L1 : a, L3 : (1− a)] � L2 and

L2 � [L1 : b, L3 : (1− b)].

Eric Pacuit 24



u : L → < is linear provided for all L = [L1 : p1, . . . , Ln : pn] ∈ L,

u(L) =
n∑

i=1

piu(Li )

von Neumann-Morgenstern Representation Theorem A binary
relation � on L satisfies Preference, Compound Lotteries, Independence
and Continuity iff � is representable by a linear utility function
u : L → <.

Moreover, u′ : L → < represents � iff there exists real numbers c > 0
and d such that u′(·) = cu(·) + d . (“u is unique up to linear
transformations.”)
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Savage

Savage derives both a decision maker’s utilities and probabilities from
preferences over acts (a Savage act is a function from states to
outcomes).
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Difficulties

I Attitudes towards risk: the Allais Paradox

I Rabin’s Theorem: the fact that people tend to avoid lotteries
[−$100 : 0.5, $110 : 0.5] is very hard to square with standard
expected utility theory

I Ambiguity aversion: the Ellsberg Paradox

I Kahneman and Tversky: Framing, loss aversion, prospect theory

I Savage/Causal/Evidential Decision Theory: Newcomb’s Paradox
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Dominance Reasoning and Act-State Dependence

w1 w2

A 1 3

B 2 4
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Dominance Reasoning and Act-State Dependence

Dominance reasoning is appropriate only when probability of outcome is
independent of choice.

(A nasty nephew wants inheritance from his rich Aunt. The nephew
wants the inheritance, but other things being equal, does not want to
apologize. Does dominance give the nephew a reason to not apologize?
Whether or not the nephew is cut from the will may depend on whether
or not he apologizes.)

Eric Pacuit 28



Newcomb’s Paradox

A very powerful being, who has been invariably accurate in his predictions
about your behavior in the past, has already acted in the following way:

1. If he has predicted that you will open just box B, he has in addition
put $1,000,000 in box B

2. If he has predicted you will open both boxes, he has put nothing in
box B.

What should you do?

R. Nozick. Newcomb’s Problem and Two Principles of Choice. 1969.
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Newcomb’s Paradox

B = 1M B = 0

1 Box 1M 0

2 Boxes 1M + 1000 1000

B = 1M B = 0

1 Box h 1− h

2 Boxes 1− h h
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Newcomb’s Paradox

J. Collins. Newcomb’s Problem. International Encyclopedia of Social and Behavorial
Sciences, 1999.
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Newcomb’s Paradox

There is a conflict between maximizing your expected value (1-box
choice) and dominance reasoning (2-box choice).

What the Predictor did yesterday is probabilistically dependent on the
choice today, but causally independent of today’s choice.
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V (A) =
∑

w V (w) · PA(w)
(the expected value of act A is a probability weighted average of the
values of the ways w in which A might turn out to be true)

Orthodox Bayesian Decision Theory: PA(w) := P(w | A) (Probability of
w given A is chosen)

Causal Decision theory: PA(w) = P(A 2→ w) (Probability of if A were
chosen then w would be true)
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Suppose 99% confidence in predictors reliability.

B1: one-box (open box B)
B2: two-box choice (open both A and B)
N: receive nothing
K : receive $1,000
M: receive $1,000,000
L: receive $1,001,000

V (B1) = V (M)P(M | B1) + V (N)P(N | B1) =
1000000 · 0.99 + 0 · 0.01 = 990, 000

V (B2) = V (L)P(L | B2) + V (K )P(K | B2) =
1001000 · 0.01 + 1000 · 0.99 = 11, 000
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Let µ be the assigned to the conditional B1 2→ M (and B2 2→ L) (both
conditionals are true iff the Predictor put $1,000,000 in box B yesterday).

B1: one-box (open box B)
B2: two-box choice (open both A and B)
N: receive nothing
K : receive $1,000
M: receive $1,000,000
L: receive $1,001,000

V (B1) = V (M)P(B1 2→ M) + V (N)P(B1 2→ N) =
1000000 · µ+ 0 · 1− µ = 1000000µ

V (B2) = V (L)P(B2 2→ L) + V (K )P(B2 2→ K ) =
1001000 · µ+ 1000 · 1− µ = 1000000µ+ 1000
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D. Lewis. Prisoner’s Dilemma Is a Newcomb Problem. Philosophy and Public Affairs,
8, pgs. 235-240, 1979.

S. Brams. Newcomb’s Problem and Prisoners’ Dilemma. The Journal of Conflict Res-
olution, 19:4, pgs. 596 - 612, 1975.

S. Hurley. Newcomb’s Problem, Prisoner’s Dilemma and Collective Action. Synthese
86, pgs. 173 - 196, 1991.
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Death in Damascus

A man in Damascus knows that he has an appointment with Death at
midnight. He will escape Death if he manages at midnight not to be at
the place of his appointment. He can be in either Damascus or Aleppo at
midnight.

As the man knows, Death is a good predictor of his
whereabouts. If he stays in Damascus, he thereby has evidence that
Death will look for him in Damascus. However, if he goes to Aleppo he
thereby has evidence that Death will look for him in Aleppo. Wherever
he decides to be at midnight, he has evidence that he would be better off
at the other place. No decision is stable.

A. Gibbard and W. Harper. Counterfactuals and Two Kinds of Expected Utility. In Ifs:
Conditionals, Belief, Decision, Chance, and Time, pp. 153 - 190, 1978.
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I The crucial distinction is between an act and a decision to perform
the act.

I Before performing an act, an agent may assess the act in light of a
decision to perform it. Information the decision carries may affect
the act’s expected utility and its ranking with respect to other acts.

I Decision makers should make self-ratifying, or ratifiable, decisions.
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Two Forms of Ratificationism

I As an elimination rule: ratificationism requires you to reject all
unratifiable acts, and to then choose among the ratifiable
alternatives.

I As an equilibrium rule: ratificationism requires you to choose an act
that is ratifiable relative to the beliefs and desires you will have
when your deliberations cease (“reflective equilibrium”).
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Taking Stock

I Many choice rules: MEU, strict/weak dominance, maxmin, minmax
regret

• Which one is “best”?
• What are the relationships between the different choice rules?

I Payoff is not the same as utility (von Neumann-Morgenstern
utilities)

I Rational choice models should be applied with care (act-state
dependence, deliberation, attitudes towards risk, attitudes toward
ambiguity, . . .
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Material that we skipped during the lecture.

Eric Pacuit 41



Allais Paradox

Options Red (1) White (89) Blue (10)

S1 A 1M 1M 1M

B 0 1M 5M

A � B iff C � B
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Allais Paradox

Options Red (1) White (89) Blue (10)

S2 C 1M 0 1M

D 0 0 5M

A � B iff C � B
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Allais Paradox

We should not conclude either

(a) The axioms of cardinal utility fail to adequately capture our
understanding of rational choice, or

(b) those who choose A in S1 and D is L2 are irrational.

Rather, people’s utility functions (their rankings over outcomes) are
often far more complicated than the monetary bets would indicate....
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Ellsberg Paradox

30 60
Lotteries Blue Yellow Green

L1 1M 0 0

L2 0 1M 0

L3 1M 0 1M

L4 0 1M 1M

L1 � L2 iff L3 � L4
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