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Course Plan

X Introduction and Motivation: Background (Relational
Semantics for Modal Logic), Subset Spaces, Neighborhood
Structures, Motivating Non-Normal Modal
Logics/Neighborhood Semantics

X Core Theory: Relationship with Other Semantics for Modal
Logic, Model Theory; Completeness, Decidability, Complexity,
Incompleteness

1. Extensions and Applications: First-Order Modal Logic,
Common Knowledge/Belief, Dynamics with Neighborhoods:
Game Logic and Game Algebra, Dynamics on Neighborhoods
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I First-Order Modal Logic ( Skip )

I Game Logic ( Skip )

I Evidence Dynamics ( Skip )
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Neighborhood Models for First-Order Modal Logic

H. Arlo Costa and E. Pacuit. First-Order Classical Modal Logic. Studia Logica,
84, pgs. 171 - 210 (2006).

Higher-Order Coalition Logic (time permitting)

G. Boella, D. Gabbay, V. Genovese, L. van der Torre. Higher-Order Coalition
Logic. 2010.
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First-Order Modal Language: L1

Extend the propositional modal language L with the usual
first-order machinery (constants, terms, predicate symbols,
quantifiers).

A := P(t1, . . . , tn) | ¬A | A ∧ A | �A | ∀xA

(note that equality is not in the language!)
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First-Order Modal Logic

T. Braüner and S. Ghilardi. First-order Modal Logic. Handbook of Modal Logic,
pgs. 549 - 620 (2007).

M. Fitting and R. Mendelsohn. First-Order Modal Logic. Kluwer Academic
Publishers (1998).
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First-order Modal Logic

A constant domain Kripke frame is a tuple 〈W ,R,D〉 where W
and D are sets, and R ⊆W ×W .

A constant domain Kripke model adds a valuation function V ,
where for each n-ary relation symbol P and w ∈W ,
V (P,w) ⊆ Dn.

A substitution is any function σ : V → D (V the set of variables).

A substitution σ′ is said to be an x-variant of σ if σ(y) = σ′(y)
for all variable y except possibly x , this will be denoted by σ ∼x σ

′.
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V (P,w) ⊆ Dn.

Suppose that σ is a substitution.

1. M,w |=σ P(x1, . . . , xn) iff 〈σ(x1), . . . , σ(xn)〉 ∈ V (P,w)
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First-order Modal Logic

A constant domain Neighborhood frame is a tuple 〈W ,N,D〉
where W and D are sets, and N : W → ℘(℘(W )).

A constant domain Neighborhood model adds a valuation
function V , where for each n-ary relation symbol P and w ∈W ,
V (P,w) ⊆ Dn.

Suppose that σ is a substitution.

1. M,w |=σ P(x1, . . . , xn) iff 〈σ(x1), . . . , σ(xn)〉 ∈ V (P,w)

2. M,w |=σ �A iff [[ϕ]]M,σ ∈ N(w)

3. M,w |=σ ∀xA iff for each x-variant σ′, M,w |=σ′ A
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First-order Modal Logic

Let S be any (classical) propositional modal logic, by FOL + S we
mean the set of formulas closed under the following rules and
axioms:

(S) All instances of axioms and rules from S.

(∀) ∀xA→ Ax
t (where t is free for x in A)

(Gen)
A→ B

A→ ∀xB , where x is not free in A.
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Barcan Schemas

I Barcan formula (BF ): ∀x�A(x)→ �∀xA(x)

I converse Barcan formula (CBF ): �∀xA(x)→ ∀x�A(x)

Observation 1: CBF is provable in FOL + EM

Observation 2: BF and CBF both valid on relational frames
with constant domains

Observation 3: BF is valid in a varying domain relational frame
iff the frame is anti-monotonic; CBF is valid in a varying domain
relational frame iff the frame is monotonic.

See (Fitting and Mendelsohn, 1998) for an extended discussion
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Constant Domains without the Barcan Formula

The system EMN and seems to play a central role in
characterizing monadic operators of high probability (See Kyburg
and Teng 2002, Arló-Costa 2004).

Of course, BF should fail in this case, given that it instantiates
cases of what is usually known as the ‘lottery paradox’:

For each individual x , it is highly probably that x will loose the
lottery; however it is not necessarily highly probably that each
individual will loose the lottery.
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Converse Barcan Formulas and Neighborhood Frames

A frame F is consistent iff for each w ∈W , N(w) 6= ∅

A first-order neighborhood frame F = 〈W ,N,D〉 is nontrivial iff
|D| > 1

Lemma Let F be a consistent constant domain neighborhood
frame. The converse Barcan formula is valid on F iff either F is
trivial or F is supplemented.
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W

X

X ∈ N(w)
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W

X

Y

Y 6∈ N(w)
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W

Y

X

F = ∅

∀v 6∈ Y , I (F , v) = ∅
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W

X

Y

F = ∅

F = D

∀v ∈ X , I (F , v) = D = {a, b}
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W

Y

X

F = ∅

F = DF = {a}

∀v ∈ Y − X , I (F , v) = D = {a}
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W

Y

X

F = ∅

F = DF = {a}

(F [a])M = Y 6∈ N(w) hence w 6|= ∀x�F (x)
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W

Y

X

F = ∅

F = DF = {a}

(∀xF (x))M = (F [a])M ∩ (F [b])M = X ∈ N(w)

hence w |= �∀xF (x)
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Barcan Formulas and Neighborhood Frames

We say that a frame closed under ≤ κ intersections if for each
state w and each collection of sets {Xi | i ∈ I} where |I | ≤ κ,
∩i∈IXi ∈ N(w).

Lemma Let F be a consistent constant domain neighborhood
frame. The Barcan formula is valid on F iff either

1. F is trivial or

2. if D is finite, then F is closed under finite intersections and if
D is infinite and of cardinality κ, then F is closed under ≤ κ
intersections.
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Completeness Theorems

Theorem FOL + E is sound and strongly complete with respect to
the class of all frames.

Theorem FOL + EC is sound and strongly complete with respect
to the class of frames that are closed under intersections.

Theorem FOL + EM is sound and strongly complete with respect
to the class of supplemented frames.

Theorem FOL + E + CBF is sound and strongly complete with
respect to the class of frames that are either non-trivial and
supplemented or trivial and not supplemented.
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FOL + K and FOL + K + BF

Theorem FOL + K is sound and strongly complete with respect
to the class of filters.

Observation The augmentation of the smallest canonical model
for FOL + K is not a canonical model for FOL + K. In fact, the
closure under infinite intersection of the minimal canonical model
for FOL + K is not a canonical model for FOL + K.

Lemma The augmentation of the smallest canonical model for
FOL + K + BF is a canonical for FOL + K + BF .

Theorem FOL + K + BF is sound and strongly complete with
respect to the class of augmented first-order neighborhood frames.
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Is the addition of quantifiers straightforward?

1. S4M is complete for the class of all frames that are reflexive,
transitive and final (every world can see an ‘end-point’).
However FOL + S4M is incomplete for Kripke models based
on S4M-frames. (see Hughes and Cresswell, pg. 283).

2. S4.2 is S4 with ♦�ϕ→ �♦ϕ. This logics is complete for the
class of frames that are reflexive, transitive and convergent.
However, FOL + S4M + BF is incomplete for the class of
constant domain models based on reflexive, transitive and
convergent frames. (see Hughes and Creswell, pg. 271)

3. The quantified extension of GL is not complete (with respect
to varying domains models).
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What is going on?

R. Goldblatt. Quantifiers, Propositions and Identity: Admissible Semantics for
Quantified Modal and Substructural Logics. Lecture Notes in Logic No. 38,
Cambridge University Press, 2011.
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An Application: Coalition Logic

G. Boella, D. Gabbay, V. Genovese, L. van der Torre. Higher-Order Coalition
Logic. 19th European Conference on Artificial Intelligence, pgs. 555 - 560, 2010.

Skip

Q. Chen and K. Su. Higher-Order Epistemic Coalition Logic for Multi-Agent
Systems. 7th Workshop on Logical Aspects of Multi-Agent Systems, 2014.
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Coalition Logic: ϕ := p | ¬ϕ | ϕ ∧ ϕ | [C ]ϕ

M,w |= [C ]ϕ iff (ϕ)M ∈ N(w ,C ): “Coalition C has a joint
strategy to force the outcome to satisfy ϕ”.

Higher-Order Coalition Logic: ϕ :=
F (x1, . . . , xn) | Xx | ¬ϕ | ϕ ∧ ϕ | ∀Xϕ | ∀xϕ | [{x}ϕ]ϕ | 〈{x}ϕ〉ϕ

I F (x1, . . . , xn) is a first-order atomic formula

I x is a first-order variable

I X is a set variable

I {x}ψ is a group operator representing the set of all d such
that ψ[d/x ] holds
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HCL: Expressivity

What does the added expressive power give you?

I Relationships between coalitions:
∀x(super user(x)→ user(x))

I General quantification over coalitions:
∀X (∀x(Xx → user(x))→ [{y}Xy ]ϕ)

Every coalition such that all of its members are users can
achieve ϕ.

I Complex relationships between coalitions and agents:
[{x}ϕ(x)]ψ → [{y}∃x(ϕ(x) ∧ collaborates(y , x))]ψ

If the coalition represented by ϕ can achieve ψ then so can
any group that collaborates with at least one member of ϕ(x).
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HCL: Barcan/Converse Barcan Formulas

Converse Barcan: [{x}ϕ(x)]∀yψ(y)→ ∀y [{x}ϕ(x)]ϕ(y)

Barcan: ∀y [{x}ϕ(x)]ϕ(y)→ [{x}ϕ(x)]∀yψ(y)

[{x}x = Eric]∀y(ESSLLI (y)→ happy(y))→
∀y [{x}x = Eric](ESSLLI (y)→ happy(y))

If I can do something to make everyone happy at ESSLLI implies
for each person at ESSLLI, I can do something to make them
happy.

∀y [{x}x = Eric](ESSLLI (y)→ happy(y))6→
[{x}x = Eric]∀y(ESSLLI (y)→ happy(y))

For each person at ESSLLI, I can make them happy does not imply
that I can do something to make everyone at ESSLLI happy.
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Higher-Order Coalition Logic

Sound and complete axiomatization combines ideas from coaltion
logic, first-order extensions of non-normal modal logics and
Henkin-style completeness for second-order logic.
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X First-Order Modal Logic

I Game Logic ( Skip )

I Evidence Dynamics ( Skip )
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Background: Propositional Dynamic Logic

Let P be a set of atomic programs and At a set of atomic
propositions.

Formulas of PDL have the following syntactic form:

ϕ := p | ⊥ | ¬ϕ | ϕ ∨ ψ | [α]ϕ

α := a | α ∪ β | α;β | α∗ | ϕ?

where p ∈ At and a ∈ P.

[α]ϕ is intended to mean “after executing the program α, ϕ is
true”
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Background: Propositional Dynamic Logic

Semantics: M = 〈W , {Ra | a ∈ P},V 〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W )

I Rα∪β := Rα ∪ Rβ
I Rα;β := Rα ◦ Rβ
I Rα∗ := ∪n≥0Rn

α

I Rϕ? = {(w ,w) | M,w |= ϕ}

M,w |= [α]ϕ iff for each v , if wRαv then M, v |= ϕ
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Background: Propositional Dynamic Logic

1. Axioms of propositional logic

2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α;β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ → ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ

8. Modus Ponens and Necessitation (for each program α)
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Background: Propositional Dynamic Logic

Theorem PDL is sound and weakly complete with respect to the
Segerberg Axioms.

Theorem The satisfiability problem for PDL is decidable
(EXPTIME-Complete).

D. Kozen and R. Parikh. A Completeness proof for Propositional Dynamic Logic.
.

D. Harel, D. Kozen and Tiuryn. Dynamic Logic. 2001.
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Concurrent Programs

α ∩ β is intended to mean “execute α and β in parallel”.

In PDL: Rα ⊆W ×W , where wRαv means executing α in state
w leads to state v .

With Concurrent Programs: Rα ⊆W × ℘(W ), where wRαV
means executing α in parallel from state w to reach all states in
V .

w |= 〈α〉ϕ iff ∃U such that (w ,U) ∈ Rα and ∀v ∈ U, v |= ϕ.

Rα∩β := {(w ,V ) | ∃U,U ′, (w ,U) ∈ Rα, (w ,U ′) ∈ Rβ, V =
U ∪ U ′}

D. Peleg. Concurrent Dynamic Logic. JACM (1987).
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From PDL to Game Logic

R. Parikh. The Logic of Games and its Applications.. Annals of Discrete Math-
ematics. (1985) .

Main Idea:
In PDL: w |= 〈π〉ϕ: there is a run of the program π starting in
state w that ends in a state where ϕ is true.

The programs in PDL can be thought of as single player games.

Game Logic generalized PDL by considering two players:

In GL: w |= 〈γ〉ϕ: Angel has a strategy in the game γ to ensure
that the game ends in a state where ϕ is true.
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From PDL to Game Logic

Consequences of two players:

〈γ〉ϕ: Angel has a strategy in γ to ensure ϕ is true

[γ]ϕ: Demon has a strategy in γ to ensure ϕ is true

Either Angel or Demon can win: 〈γ〉ϕ ∨ [γ]¬ϕ

But not both: ¬(〈γ〉ϕ ∧ [γ]¬ϕ)

Thus, [γ]ϕ↔ ¬〈γ〉¬ϕ is a valid principle

However, [γ]ϕ ∧ [γ]ψ → [γ](ϕ ∧ ψ) is not a valid principle
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From PDL to Game Logic
Reinterpret operations and invent new ones:

I ?ϕ: Check whether ϕ currently holds

I γ1; γ2: First play γ1 then γ2

I γ1 ∪ γ2: Angel choose between γ1 and γ2

I γ∗: Angel can choose how often to play γ (possibly not at
all); each time she has played γ, she can decide whether to
play it again or not.

I γd : Switch roles, then play γ

I γ1 ∩ γ2 := (γd1 ∪ γd2 )d : Demon chooses between γ1 and γ2

I γx := ((γd)∗)d : Demon can choose how often to play γ
(possibly not at all); each time he has played γ, he can decide
whether to play it again or not.
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Game Logic

Syntax

Let Γ0 be a set of atomic games and At a set of atomic
propositions. Then formulas of Game Logic are defined inductively
as follows:

γ := g | ϕ? | γ; γ | γ ∪ γ | γ∗ | γd

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ | [γ]ϕ

where p ∈ At, g ∈ Γ0.
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Game Logic

A neighborhood game model is a tuple
M = 〈W , {Eg | g ∈ Γ0},V 〉 where

W is a nonempty set of states

For each g ∈ Γ0, Eg : W → ℘(℘(W )) is a monotonic
neighborhood function.

X ∈ Eg (w) means in state s, Angel has a strategy to force the
game to end in some state in X (we may write wEgX )

V : At→ ℘(W ) is a valuation function.
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Game Logic

Propositional letters and boolean connectives are as usual.

M,w |= 〈γ〉ϕ iff [[ϕ]]M ∈ Eγ(w)

Suppose Eγ(Y ) := {s | Y ∈ Eg (s)}
I Eγ1;γ2(Y ) := Eγ1(Eγ2(Y ))

I Eγ1∪γ2(Y ) := Eγ1(Y ) ∪ Eγ2(Y )

I Eϕ?(Y ) := (ϕ)M ∩ Y

I Eγd (Y ) := Eγ(Y )

I Eγ∗(Y ) := µX .Y ∪ Eγ(X )
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Game Logic: Axioms

1. All propositional tautologies

2. 〈α;β〉ϕ↔ 〈α〉〈β〉ϕ Composition

3. 〈α ∪ β〉ϕ↔ 〈α〉ϕ ∨ 〈β〉ϕ Union

4. 〈ψ?〉ϕ↔ (ψ ∧ ϕ) Test

5. 〈αd〉ϕ↔ ¬〈α〉¬ϕ Dual

6. (ϕ ∨ 〈α〉〈α∗〉ϕ)→ 〈α∗〉ϕ Mix

and the rules,
ϕ ϕ→ ψ

ψ

ϕ→ ψ

〈α〉ϕ→ 〈α〉ψ
(ϕ ∨ 〈α〉ψ)→ ψ

〈α∗〉ϕ→ ψ
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Game Logic

I Game Logic is more expressive than PDL

〈(gd)∗〉⊥
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Game Logic

Theorem Dual-free game logic is sound and complete with
respect to the class of all game models.

Theorem Iteration-free game logic is sound and complete with
respect to the class of all game models.

Open Question Is (full) game logic complete with respect to the
class of all game models?

R. Parikh. The Logic of Games and its Applications.. Annals of Discrete Math-
ematics, 1985.

M. Pauly. Logic for Social Software. Ph.D. Thesis, University of Amsterdam
(2001).
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Game Logic

Theorem Given a game logic formula ϕ and a finite game model
M, model checking can be done in time O(|M|ad(ϕ)+1 × |ϕ|)

R. Parikh. The Logic of Games and its Applications.. Annals of Discrete Math-
ematics. (1985).

M. Pauly. Logic for Social Software. Ph.D. Thesis, University of Amsterdam
(2001).

D. Berwanger. Game Logic is Strong Enough for Parity Games. Studia Logica
75 (2003).
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Game Logic

Theorem The satisfiability problem for game logic is in EXPTIME.

R. Parikh. The Logic of Games and its Applications.. Annals of Discrete Math-
ematics. (1985).

M. Pauly. Logic for Social Software. Ph.D. Thesis, University of Amsterdam
(2001).

D. Berwanger. Game Logic is Strong Enough for Parity Games. Studia Logica
75 (2003).
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Game Logic

Theorem Game logic can be translated into the modal µ-calculus

R. Parikh. The Logic of Games and its Applications.. Annals of Discrete Math-
ematics. (1985).

M. Pauly. Logic for Social Software. Ph.D. Thesis, University of Amsterdam
(2001).

D. Berwanger. Game Logic is Strong Enough for Parity Games. Studia Logica
75 (2003).
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Game Logic

Theorem Game logic can be translated into the modal µ-calculus

Theorem No finite level of the modal µ-calculus hierarchy
captures the expressive power of game logic.

R. Parikh. The Logic of Games and its Applications.. Annals of Discrete Math-
ematics. (1985).

M. Pauly. Logic for Social Software. Ph.D. Thesis, University of Amsterdam
(2001).

D. Berwanger. Game Logic is Strong Enough for Parity Games. Studia Logica
75 (2003).
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Game Algebra

Definition Two games γ1 and γ2 are equivalent provided
Eγ1 = Eγ2 in all models (iff 〈γ1〉p ↔ 〈γ2〉p is valid for a p which
occurs neither in γ1 nor in γ2. )
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Game Algebra

Definition Two games γ1 and γ2 are equivalent provided
Eγ1 = Eγ2 in all models (iff 〈γ1〉p ↔ 〈γ2〉p is valid for a p which
occurs neither in γ1 nor in γ2. )

Skip
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Game Algebra

Game Boards: Given a set of states or positions B, for each game
g and each player i there is an associated relation E i

g ⊆ B × 2B :

pE i
gT holds if in position p, i can force that the outcome of g will

be a position in T .

I (monotonicity) if pE i
gT and T ⊆ U then pE i

gU

I (consistency) if pE i
gT then not pE 1−i

g (B − T )

Given a game board (a set B with relations E i
g for each game and

player), we say that two games g , h (g ≈ h) are equivalent if
E i
g = E i

h for each i .
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Game Algebra

1. Standard Laws of Boolean Algebras

2. (x ; y); z ≈ x ; (y ; z)

3. (x ∨ y); z ≈ (x ; z) ∨ (y ; z), (x ∧ y); z ≈ (x ; z) ∧ (y ; z)

4. −x ;−y ≈ −(x ; y)

5. y � z ⇒ x ; y � x ; z
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Theorem Sound and complete axiomatizations of (iteration free)
game algebra

Y. Venema. Representing Game Algebras. Studia Logica 75 (2003).

V. Goranko. The Basic Algebra of Game Equivalences. Studia Logica 75 (2003).

Eric Pacuit 48



Concurrent Game Logic

γ1 ∩ γ2 means “play γ1 and γ2 in parallel.”

Need both the disjunctive and conjunctive interpretation of the
neighborhoods.

Main Idea: Rγ ⊆W × ℘(℘(℘(W )))

J. van Benthem, S. Ghosh and F. Liu. Modelling Simultaneous Games in Dy-
namic Logic. Synthese, 165(2), pgs. 247-268, 2008.
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More Information on Game Logic and Algebra

M. Pauly and R. Parikh. Game Logic — An Overview. Studia Logica 75, 2003.

R. Parikh. The Logic of Games and its Applications.. Annals of Discrete Math-
ematics, 1985.

J. van Benthem. Logics and Games. The MIT Press, 2014.
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X First-Order Modal Logic

X Game Logic

I Evidence Dynamics ( Skip )
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Background: Modeling Informational Changes

I Modeling strategies: temporal-based vs. change-based;
rich states and algebra/simple operation vs. simples states
and algebra/complex or many operation

M τ
=⇒Mτ

Given an operation for transforming a model, what are the
“recursion axioms” that characterize this operation?

Example: “Public Announcement of ϕ”: M!ϕ is the submodel
of M where all states satisfy ϕ

[!ϕ]Kψ ↔ (ϕ→ K (ϕ→ [!ϕ]ψ))
[!ϕ]Bψ ↔ (ϕ→ Bϕ[!ϕ]ψ)

[!ϕ]Bαψ ↔ (ϕ→ Bϕ∧[!ϕ]α[!ϕ]ψ)
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Example: “Public Announcement of ϕ”: M!ϕ is the submodel
of M where all states satisfy ϕ

[!ϕ]Kψ ↔ (ϕ→ K (ϕ→ [!ϕ]ψ))
[!ϕ]Bψ ↔ (ϕ→ Bϕ[!ϕ]ψ)

[!ϕ]Bαψ ↔ (ϕ→ Bϕ∧[!ϕ]α[!ϕ]ψ)
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“Public Announcements”

Accept evidence from an infallible source.

Let M = 〈W ,E ,V 〉 be an evidence model and ϕ ∈ L a formula.
The model M!ϕ = 〈W !ϕ,E !ϕ,V !ϕ〉 is defined as follows:
W !ϕ = [[ϕ]]M, for each p ∈ At, V !ϕ(p) = V (p) ∩W !ϕ and for all
w ∈W ,

E !ϕ(w) = {X | ∅ 6= X = Y ∩ [[ϕ]]M for some Y ∈ E (w)}.

[!ϕ]ψ: “ψ is true after the public announcement of ϕ”

M,w |= [!ϕ]ψ iff M,w |= ϕ implies M!ϕ,w |= ψ
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Public Announcements: Recursion Axioms

[!ϕ]p ↔ (ϕ→ p) (p ∈ At)

[!ϕ](ψ ∧ χ) ↔ ([!ϕ]ψ ∧ [!ϕ]χ)

[!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ)

[!ϕ]�ψ ↔ (ϕ→ �ϕ[!ϕ]ψ)

[!ϕ]Bψ ↔ (ϕ→ Bϕ[!ϕ]ψ)

[!ϕ]�αψ ↔ (ϕ→ �ϕ∧[!ϕ]α[!ϕ]ψ)

[!ϕ]Bαψ ↔ (ϕ→ Bϕ∧[!ϕ]α[!ϕ]ψ)

[!ϕ]Aψ ↔ (ϕ→ A[!ϕ]ψ)
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Dissecting the Public Announcement Operation

On evidence models, a public announcement (!ϕ) is a complex
combination of three distinct epistemic operations:

1. Evidence addition: accepting that ϕ is a piece of evidence

2. Evidence removal: remove evidence for ¬ϕ

3. Evidence modification: incorporate ϕ into each piece of
evidence gathered so far

Eric Pacuit 55
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Evidence Addition

Let M = 〈W ,E ,V 〉 be an evidence model, and ϕ a formula in L.
The model M+ϕ = 〈W+ϕ,E+ϕ,V+ϕ〉 has W+ϕ = W , V+ϕ = V
and for all w ∈W ,

E+ϕ(w) = E (w) ∪ {[[ϕ]]M}

[+ϕ]ψ: “ψ is true after ϕ is accepted as an admissible piece of
evidence”

M,w |= [+ϕ]ψ iff M,w |= Eϕ implies M+ϕ,w |= ψ
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Evidence Addition

Let M = 〈W ,E ,V 〉 be an evidence model, and ϕ a formula in L.
The model M+ϕ = 〈W+ϕ,E+ϕ,V+ϕ〉 has W+ϕ = W , V+ϕ = V
and for all w ∈W ,

E+ϕ(w) = E (w) ∪ {[[ϕ]]M}

[+ϕ]ψ: “ψ is true after ϕ is accepted as an admissible piece of
evidence”

M,w |= [+ϕ]ψ iff M,w |= Eϕ implies M+ϕ,w |= ψ

Eric Pacuit 56



Evidence Addition: Recursion Axioms

[+ϕ]p ↔ (Eϕ→ p) (p ∈ At)

[+ϕ](ψ ∧ χ) ↔ ([+ϕ]ψ ∧ [+ϕ]χ)

[+ϕ]¬ψ ↔ (Eϕ→ ¬[+ϕ]ψ)

[+ϕ]Aψ ↔ (Eϕ→ A[+ϕ]ψ)
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Evidence Addition: Recursion Axioms

[+ϕ]�ψ ↔ (Eϕ→ (�[+ϕ]ψ ∨ A(ϕ→ [+ϕ]ψ)))

[+ϕ]�αψ ↔ (Eϕ→ (�[+ϕ]α[+ϕ]ψ ∨ (E (ϕ ∧ [+ϕ]α)∧
A((ϕ ∧ [+ϕ]α)→ [+ϕ]ψ))))
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Evidence Addition: Recursion Axioms

[+ϕ]Bψ ↔ ????

[+ϕ]Bαψ ↔ ????

Eric Pacuit 57



Adding ϕ

E1 E2

E3
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Adding ϕ

E+ϕ1 E2
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Adding ϕ
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Adding ϕ

E+ϕ1 E+ϕ2

E+ϕ3
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Compatibile vs. Incompatible

1. X is maximally ϕ-compatible provided ∩X ∩ [[ϕ]]M 6= ∅ and
no proper extension X ′ of X has this property; and

2. X is incompatible with ϕ provided there are X1, . . . ,Xn ∈ X
such that X1 ∩ · · · ∩ Xn ⊆ [[¬ϕ]]M.

Conditional belief: B+ϕψ iff for each maximally ϕ-compatible
X ⊆ E (w),

⋂
X ∩ [[ϕ]]M ⊆ [[ψ]]M

Conditional Beliefs (Incompatibility Version): M,w |= B−ϕψ
iff for all maximal f.i.p., if X is incompatible with ϕ then⋂
X ⊆ [[ψ]]M.

Eric Pacuit 59
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B+¬ϕ vs. B−ϕ
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B+¬ϕ vs. B−ϕ
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Recursion Axiom

Fact. [+ϕ]Bψ ↔ (Eϕ→ (B+ϕ[+ϕ]ψ ∧ B−ϕ[+ϕ]ψ)) is valid.
Proof Sketch

But now, we need a recursion axiom for B−ϕ.

Language Extension: M,w |= Bϕ,ψχ iff for all maximally
ϕ-compatible sets X ⊆ E (w), if

⋂
X ∩ [[ϕ]]M ⊆ [[ψ]]M, then⋂

X ∩ [[ϕ]]M ⊆ [[χ]]M.

B+ϕ is Bϕ,> and B−ϕ is B>,¬ϕ

Fact. The following is valid:

[+ϕ]Bψ,αχ↔ (Eϕ→ (Bϕ∧[+ϕ]ψ,[+ϕ]α[+ϕ]χ∧B [+ϕ]ψ,¬ϕ∧[+ϕ]α[+ϕ]χ))

Eric Pacuit 61



Recursion Axiom

Fact. [+ϕ]Bψ ↔ (Eϕ→ (B+ϕ[+ϕ]ψ ∧ B−ϕ[+ϕ]ψ)) is valid.
Proof Sketch

But now, we need a recursion axiom for B−ϕ.

Language Extension: M,w |= Bϕ,ψχ iff for all maximally
ϕ-compatible sets X ⊆ E (w), if

⋂
X ∩ [[ϕ]]M ⊆ [[ψ]]M, then⋂

X ∩ [[ϕ]]M ⊆ [[χ]]M.

B+ϕ is Bϕ,> and B−ϕ is B>,¬ϕ

Fact. The following is valid:

[+ϕ]Bψ,αχ↔ (Eϕ→ (Bϕ∧[+ϕ]ψ,[+ϕ]α[+ϕ]χ∧B [+ϕ]ψ,¬ϕ∧[+ϕ]α[+ϕ]χ))

Eric Pacuit 61



Recursion Axiom

Fact. [+ϕ]Bψ ↔ (Eϕ→ (B+ϕ[+ϕ]ψ ∧ B−ϕ[+ϕ]ψ)) is valid.
Proof Sketch

But now, we need a recursion axiom for B−ϕ.

Language Extension: M,w |= Bϕ,ψχ iff for all maximally
ϕ-compatible sets X ⊆ E (w), if

⋂
X ∩ [[ϕ]]M ⊆ [[ψ]]M, then⋂

X ∩ [[ϕ]]M ⊆ [[χ]]M.

B+ϕ is Bϕ,> and B−ϕ is B>,¬ϕ

Fact. The following is valid:

[+ϕ]Bψ,αχ↔ (Eϕ→ (Bϕ∧[+ϕ]ψ,[+ϕ]α[+ϕ]χ∧B [+ϕ]ψ,¬ϕ∧[+ϕ]α[+ϕ]χ))

Eric Pacuit 61



Recursion Axiom

Fact. [+ϕ]Bψ ↔ (Eϕ→ (B+ϕ[+ϕ]ψ ∧ B−ϕ[+ϕ]ψ)) is valid.
Proof Sketch

But now, we need a recursion axiom for B−ϕ.

Language Extension: M,w |= Bϕ,ψχ iff for all maximally
ϕ-compatible sets X ⊆ E (w), if

⋂
X ∩ [[ϕ]]M ⊆ [[ψ]]M, then⋂

X ∩ [[ϕ]]M ⊆ [[χ]]M.

B+ϕ is Bϕ,> and B−ϕ is B>,¬ϕ

Fact. The following is valid:

[+ϕ]Bψ,αχ↔ (Eϕ→ (Bϕ∧[+ϕ]ψ,[+ϕ]α[+ϕ]χ∧B [+ϕ]ψ,¬ϕ∧[+ϕ]α[+ϕ]χ))

Eric Pacuit 61



Dissecting the Public Announcement Operation

On evidence models, a public announcement (!ϕ) is a complex
combination of three distinct epistemic operations:

X Evidence addition: accepting that ϕ is a piece of evidence

2. Evidence removal: remove evidence for ¬ϕ

3. Evidence modification: incorporate ϕ into each piece of
evidence gathered so far
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Evidence Management

Evidence Removal: E−ϕ(w) = E (w)− {X | X ⊆ [[ϕ]]M}

M,w |= [−ϕ]ψ iff M,w |= ¬Aϕ implies M−ϕ,w |= ψ More

Evidence Modification: E⊕ϕ(w) = {X ∪ [[ϕ]]M | X ∈ E (w)}

M,w |= [⊕ϕ]ψ iff M⊕ϕ,w |= ψ

I [⊕ϕ]�ψ ↔ (�[⊕ϕ]ψ ∧ A(ϕ→ [⊕ϕ]ψ))

Evidence Combination: E#(w) is the smallest set closed under
consistent intersection and containing E (w)

M,w |= [#]ϕ iff M#,w |= ϕ

I Are ¬[#]�¬ϕ→ Bϕ and [#]�ϕ→ Bϕ valid? Explain
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Summary: Conditional Belief/Evidence

�ψ: “there is evidence for ψ”
�ϕψ: “there is evidence compatible with ϕ for ψ”
�γψ: “there is evidence compatible with each of the γi for ψ”

Bψ: “the agent believe χ”
Bϕψ: “the agent believe χ conditional on ϕ”
Bϕγ ψ: “the agent believe χ conditional on ϕ assuming compatibility

with each of the γi”
Bϕ,αψ: “the agent believe ψ, after having settled on α and

conditional on ϕ”

Complete logical analysis?

Bϕψ → B(ϕ→ ψ) and B(ϕ→ ψ)→ B>,ϕψ

Eric Pacuit 64
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Summary: Evidence Operations

Public announcement: [!ϕ]Bψ ↔ (ϕ→ Bϕ[!ϕ]ψ)

Evidence addition: [+ϕ]Bψ ↔ (Eϕ→ (B+ϕ[+ϕ]ψ ∧ B−ϕ[+ϕ]ψ))

Evidence removal: [−ϕ]Bψ ↔ (¬Aϕ→ B¬ϕ[−ϕ]ψ)
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Concluding Remarks
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Concluding Remarks: Robust Belief, Reliable and
Unreliable Evidence

Robust Belief: M,w |= B rϕ iff for each X ⊆W with w ∈ X , we
have Min�(X ) ⊆ [[ϕ]]M

Reliable Evidence: EC (w) = {X ∈ E (w) | w ∈ X}

M,w |= �Cϕ iff for all v ∈
⋂
EC (w), M, v |= ϕ

Unreliable Evidence: EU(w) = {X ∈ E (w) | w 6∈ X}.

M,w |= �Uϕ iff for all v ∈
⋃
EU(w), M, v |= ϕ
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Robust Belief: M,w |= B rϕ iff for each X ⊆W with w ∈ X , we
have Min�(X ) ⊆ [[ϕ]]M
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Concluding Remarks: Robust Belief, Reliable and
Unreliable Evidence

Fact. Let M be a uniform evidence model, then for all factual
formulas ϕ:

M,w |= �Cϕ ∧�Uϕ iff ORD(M),w |= B rϕ

Explain

Fact The operators �C and �U are not definable in evidence
belief language L. Proof
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Concluding Remarks: Evidence Addition and Plausibility

E

�E

E+

�E+

+X

??

�E+
=�E −{(w , v) | v ∈ X and w 6∈ X}.
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Concluding Remarks: Evidence Addition and Plausibility

E

�E

E+

�E+

??

!ϕ

E+ = E+ϕ,−(¬ϕ),⇑ϕ (add ϕ, remove ¬ϕ, modify with ϕ)
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Concluding Remarks: Many Agents

Social notions: Let M = 〈W , Ei , Ej ,V 〉 be a multiagent evidence
model. What evidence does the group i , j have?

I M,w |= �{i ,j}ϕ iff there is a X ∈ Ei ∪ Ej such that
X ⊆ [[ϕ]]M

I M,w |= �{i ,j}ϕ iff there is a X ∈ Ei ∩ Ej such that
X ⊆ [[ϕ]]M

I M,w |= [i u j ]ϕ iff there exists X ∈ Ei u Ej with X ⊆ [[ϕ]]M
Ei u Ej = {Y | ∅ 6= Y = X ∩ X ′ with X ∈ Ei and X ′ ∈ Ej }
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Concluding Remarks: Some Questions

I What is the right notion of bisimulation for these models?

I What is the complete logic in a language with the conditional
belief/evidence operators? ...in a language with the
(un)reliable evidence operator?

I We know that the satisfiability problem is decidable, but what
is its complexity?

I What happens when the agent notices an inconsistency in her
evidence? (eg., Priority structures, represent the sources)

I · · ·
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Course Plan

X Introduction and Motivation: Background (Relational
Semantics for Modal Logic), Subset Spaces, Neighborhood
Structures, Motivating Non-Normal Modal
Logics/Neighborhood Semantics
(Monday, Tuesday)

X Core Theory: Completeness, Decidability, Complexity,
Incompleteness, Relationship with Other Semantics for Modal
Logic, Model Theory
(Tuesday, Wednesday, Thursday)

X Extensions and Applications: First-Order Modal Logic,
Common Knowledge/Belief, Dynamics with Neighborhoods:
Game Logic and Game Algebra, Dynamics on Neighborhoods
(Thursday, Friday)
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Concluding Remarks (1)

I Why study non-normal modal logics?

I Why study neighborhood semantics for modal logic?
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Concluding Remarks (2)

I Proof theory

I Common knowledge/belief in neighborhood structures

I What is the “right” modal language for reasoning about
neighborhood structures (hybrid logic, properties of
neighborhoods, etc.)

I Model theory (uniform interpolation, Golblatt-Thomason
Theorem, ...)

I Alternative semantics for non-normal modal logics

I . . .
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Thank you!!
pacuit.org/esslli2014/nbhd
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Proof Sketch
M,w |= [+ϕ]Bψ iff

M,w |= B+ϕ[+ϕ]ψ ∧ B−ϕ[+ϕ]ψ

for each maximally f.i.p. X ⊆ E+ϕ(w), ∩X ⊆ [[ψ]]M+ϕ

1. [[ϕ]]M ∈ X . Then X − {[[ϕ]]M} is a maximal f.i.p. in M that
is compatible with ϕ.⋂

Xϕ =
⋂
X ⊆ [[ψ]]M+ϕ = [[[+ϕ]ψ]]M

M,w |= B+ϕ[+ϕ]ψ

2. X is incompatible with ϕ: there exists X1 . . . ,Xn ∈ X such
that X1 ∩ · · ·Xn ⊆ [[¬ϕ]]M. Then X is a maximal f.i.p. in M
with ⋂

X ⊆ [[ψ]]M+ϕ = [[[+ϕ]ψ]]M

M,w |= B−ϕ[+ϕ]ψ

Back
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Evidence Removal

Let M = 〈W ,E ,V 〉 be an evidence model, and ϕ ∈ L. The model
M−ϕ = 〈W−ϕ,E−ϕ,V−ϕ〉 has W−ϕ = W , V−ϕ = V and for all
w ∈W ,

E−ϕ(w) = E (w)− {X | X ⊆ [[ϕ]]M}.

[−ϕ]ψ: “after removing the evidence that ϕ, ψ is true”

M,w |= [−ϕ]ψ iff M,w |= ¬Aϕ implies M−ϕ,w |= ψ
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Let M = 〈W ,E ,V 〉 be an evidence model, and ϕ ∈ L. The model
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Fact. Evidence removal extends the language.

r

rq

p

E1

r

rq

p

E2

[−p]�(p ∨ q) is true in M1 but not in M2.
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Compatible Evidence

�ϕψ: “ψ is entailed by some admissible evidence compatible with
each of ϕ”

Let M = 〈W ,E ,V 〉 be an evidence model and ϕ = (ϕ1, . . . , ϕn) a
finite sequence of formulas. We say that a subset X ⊆W is
compatible with ϕ provided that, for each formula ϕi ,
X ∩ [[ϕi ]]M 6= ∅.

M,w |= �ϕψ iff there is some X ∈ E (w) compatible with ϕ
where X ⊆ [[ψ]]M

Recursion axiom: [−ϕ]�ψ ↔ (¬Aϕ→ �¬ϕ[−ϕ]ψ)
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Evidence Removal: Recursion Axioms
Langage L′: p | ¬ϕ | ϕ ∧ ψ | Bαϕψ | �αϕψ | Aϕ

I M,w |= �αϕψ iff there is X ∈ E (w) compatible with ϕ, α
such that X ∩ [[α]]M ⊆ [[ψ]]M.

I M,w |= Bαϕψ iff for each maximal α-f.i.p. X compatible with
ϕ,

⋂
Xα ⊆ [[ψ]]M. Back

[−ϕ]p ↔ (¬Aϕ→ p) (p ∈ At)

[−ϕ](ψ ∧ χ) ↔ ([−ϕ]ψ ∧ [−ϕ]χ)

[−ϕ]¬ψ ↔ (¬Aϕ→ ¬[−ϕ]ψ)

[−ϕ]�α
ψ
χ ↔ (¬Aϕ→ �[−ϕ]α

[−ϕ]ψ,¬ϕ[−ϕ]χ)

[−ϕ]Bα
ψ
χ ↔ (¬Aϕ→ B

[−ϕ]α
[−ϕ]ψ,¬ϕ[−ϕ]χ)

[−ϕ]Aψ ↔ (¬Aϕ→ A[−ϕ]ψ)
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Evidence Combination (1)

One-round evidence combination:

E#1(w) = E (w) ∪ {X | there are Y1,Y2 ∈ E (w) with ∅ 6= X = Y1 ∩ Y2}

Is (E (ϕ ∧ ψ) ∧�ϕ ∧�ψ)→ [#1]�(ϕ ∧ ψ) valid? No!

Evidence That Operator M,w |= �ϕ iff [[ϕ]]M ∈ E (w)

Fact. (E (ϕ ∧ ψ) ∧�ϕ ∧�ψ)→ [#1]� (ϕ ∧ ψ). is valid.
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Evidence Combination (2)

Evidence combination Let M = 〈W ,E ,V 〉 be an evidence
model. The model M# = 〈W#,E#,V#〉 has W# = W ,
V# = V and for all w ∈W , E#(w) is the smallest set closed
under consistent intersection and containing E (w).

[#]ϕ: “ϕ is true after the agent (consistently) combines (all of)
her evidence”

M,w |= [#]ϕ iff M#,w |= ϕ.
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Evidence Combination: Some Properties

1. �[#]ϕ→ [#]�ϕ (combining evidence does not remove any
of the original evidence)

2. B[#]ϕ↔ [#]Bϕ (beliefs are immune to evidence
combination)

3. Bϕ→ [#]�ϕ (beliefs are explicitly supported after
consistently combining evidence)

4. For factual ϕ, Bϕ→ ¬[#]�¬ϕ (if an agent believes ϕ then
the agent cannot combine her evidence so that there is
evidence for ¬ϕ)
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Dynamically Relating Beliefs with Evidence

Bϕ→ �ϕ vs. Bϕ→ [#]�ϕ

�ϕ→ Bϕ vs. �¬ϕ→ ¬Bϕ vs. Bϕ→ ¬[#]�¬ϕ

Can we dynamically characterize beliefs in terms of evidence? Are
¬[#]�¬ϕ→ Bϕ and [#]�ϕ→ Bϕ valid? No!

p ¬p

E1

p ¬p

E2

Back
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Different Evidential Situations

X4 X5

qq p

E3 = {X4,X5}

qp

qp

X3

X2

E2 = {X2,X3}
X1
E1 = {X1}

p q
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Plausibility Models ↪→ Evidence Models (2)

w p

p q

EV (M1)

w p

p q

EV (M2)

w p

p

p, q

p, q

EV (M3)

Fact. The evidence sets of generated models EV (M) are closed
under intersections.
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Plausibility Models ↪→ Evidence Models (3)

P-translation: (·)P : LE → L� is defined as follows:

I pP = p, (¬ϕ)P = ¬ϕP , (ϕ ∧ ψ)P = ϕP ∧ ψP ,

I (�ϕ)P = E [�]ϕP , (Aϕ)P = AϕP ,

I (�ϕψ)P = E〈�〉(ϕP ∧ [�](ϕP → ψP )),

I (�ϕγψ)P = E(
∧

i 〈�〉γ
P
i ∧ 〈�〉(ϕ

P ∧ [�](ϕP → ψP ))),

I (Bϕψ)P = A(ϕP → (〈�〉ϕP ∧ [�](ϕP → ψP ))),

I (Bϕ,αψ)P = A(([�]αP ∧ [�]〈�〉ϕP )→ 〈�〉(ϕP ∧ [�](ϕP → ψP ))), and

I (B
ϕ
γ ψ)P = A((ϕP ∧

∧
i 〈�〉γ

P
i )→ (〈�〉(ϕP ∧

∧
i 〈�〉γ

P
i ) ∧ [�]((ϕP ∧

∧
i 〈�〉γ

P
i )→ ψP ))).

Lemma. Let M = 〈W ,�,V 〉 be a plausibility model. For any
ϕ ∈ LE and world w ∈W ,

M,w |= ϕP iff EV (M),w |= ϕ
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Robust Beliefs

[�]ϕ: “the agent robustly believes that ϕ”

Fact. M,w |= [�]ϕ iff M,w |= Bψi ϕ for all ψ with M,w |= ψ.

the agent robustly believew ϕ iff she continues to believe ϕ given
any true “evidence”
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Robust Beliefs with Incomparable Worlds

M,w |= B rϕ iff for each X ⊆W with w ∈ X , we have

Min�(X ) ⊆ [[ϕ]]M

Fact. On arbitrary pre-orders, B rϕ is not equivalent to [�]ϕ.

X
w vp

p p p

Fact. On arbitrary pre-orders M, robust belief B rϕ holds at w iff
ϕ is true at all worlds v 6� w that are not strictly less plausible
than w ([6�]ϕ).
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Reliable Evidence

Suppose that M = 〈W ,E ,V 〉 is an evidence model.

Reliable Evidence: EC (w) = {X ∈ E (w) | w ∈ X}
�Cϕ: “the agent’s reliable evidence entails ϕ”

M,w |= �Cϕ iff for all v ∈
⋂
EC (w), M, v |= ϕ

Fact. Let M be a uniform evidence model, ϕ a ground formula,
then:

M,w |= [�]ϕ iff ORD(M),w |= �Cϕ

But this is not robust belief on plausibility orders that are not
connected!
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Reliable and Unreliable Evidence

Suppose that M = 〈W ,E ,V 〉 is an evidence model.

Unreliable Evidence: EU(w) = {X ∈ E (w) | w 6∈ X}.
�U : “ϕ follows from the unreliable evidence at w”

M,w |= �Uϕ iff for all v ∈
⋃
EU(w), M, v |= ϕ

Fact. Let M be a uniform evidence model, then for all factual
formulas ϕ:

M,w |= �Cϕ ∧�Uϕ iff ORD(M),w |= B rϕ

Back
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Simple Observations about Expressivity

Y

ZX

E1 = {X}

Y

ZX

E2 = {X ,Y }

Y

ZX

E3 = {X ,Y ,Z}

Fact. Our language is invariant under adding supersets of evidence
already contained in an evidence state.
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Simple Observations about Expressivity

Fact. The belief modality is not definable in terms of evidence
modalities only.

Let M1 = 〈W1,E1,V1〉 and M2 = 〈W2,E2,V2〉 be two evidence
models. A non-empty relation Z ⊆W1 ×W2 is a (monotonic)
bisimulation if, for all worlds w1 ∈W1 and w2 ∈W2:

(Prop) If w1Zw2, then for all p ∈ At, w1 ∈ V1(p) iff w2 ∈ V2(p).

(Forth) If w1Zw2, then for each X ∈ E sup
1 (w1) there is a

X ′ ∈ E sup
2 (w2) such that for all x ′ ∈ X ′, there is a x ∈ X such that

xZx ′.

(Back) If w1Zw2, then for each X ∈ E sup
2 (w2) there is a

X ′ ∈ E sup
1 (w1) such that for all x ′ ∈ X ′, there is a x ∈ X such that

xZx ′.
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Simple Observations about Expressivity
Fact. The belief modality is not definable in terms of evidence
modalities only.

X Y

q p q

E1 = {X ,Y }

Bp

Z

p q

E2 = {Z}

¬Bp
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Conditional Beliefs: Valid Principles

1. Bϕϕ

2. Bϕψ → Bϕ(ψ ∨ χ)

3. (Bϕψ1 ∧ Bϕψ2)→ Bϕ(ψ1 ∧ ψ2)

4. (Bϕ1ψ ∧ Bϕ2ψ)→ Bϕ1∨ϕ2ψ

5. (Bϕψ ∧ Bψϕ)→ (Bϕχ↔ Bψχ)

Back
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Monotonic Bisimulation

Let M1 = 〈W1,E1,V1〉 and M2 = 〈W2,E2,V2〉 be two evidence
models. A non-empty relation Z ⊆W1 ×W2 is a bisimulation if,
for all worlds w1 ∈W1 and w2 ∈W2:

(Prop) If w1Zw2, then for all p ∈ At, p ∈ V1(w1) iff p ∈ V2(w2).

(Forth) If w1Zw2, then for each X ∈ E sup
1 (w1) there is a

X ′ ∈ E sup
2 (w2) such that for all x ′ ∈ X ′, there is a x ∈ X such that

xZx ′.

(Back) If w1Zw2, then for each X ∈ E sup
2 (w2) there is a

X ′ ∈ E sup
1 (w1) such that for all x ′ ∈ X ′, there is a x ∈ X such that

xZx ′.
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w
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¬p

p
v

¬p

E E ′
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I Proof theory

I Common knowledge/belief in neighborhood structures

I What is the “right” modal language for reasoning about
neighborhood structures (hybrid logic, properties of
neighborhoods, etc.)

I Model theory (uniform interpolation, Golblatt-Thomason
Theorem, ...)

I Alternative semantics for non-normal modal logics

I . . .
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Course Plan

X Introduction and Motivation: Background (Relational
Semantics for Modal Logic), Subset Spaces, Neighborhood
Structures, Motivating Non-Normal Modal
Logics/Neighborhood Semantics
(Monday, Tuesday)

X Core Theory: Completeness, Decidability, Complexity,
Incompleteness, Relationship with Other Semantics for Modal
Logic, Model Theory
(Tuesday, Wednesday, Thursday)

X Extensions and Applications: First-Order Modal Logic,
Common Knowledge/Belief, Dynamics with Neighborhoods:
Game Logic and Game Algebra, Dynamics on Neighborhoods
(Thursday, Friday)
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Thank you!!
pacuit.org/esslli2014/nbhd
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