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Course Plan

X Introduction and Motivation: Background (Relational
Semantics for Modal Logic), Subset Spaces, Neighborhood
Structures, Motivating Non-Normal Modal
Logics/Neighborhood Semantics

1. Core Theory: Relationship with Other Semantics for Modal
Logic, Model Theory; Completeness, Decidability, Complexity,
Incompleteness

2. Extensions and Applications: First-Order Modal Logic,
Common Knowledge/Belief, Dynamics with Neighborhoods:
Game Logic and Game Algebra, Dynamics on Neighborhoods
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Core Theory

I Neighborhood Semantics in the Broader Logical Landscape

I Completeness, Decidability, Complexity

I Incompleteness

I Relation with Relational Semantics

I Model Theory
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The Broader Logical Landscape

X Relational Models

X Topological Models

X n-ary Relational Structures

I Plausibility Structures

I First-Order Logic
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Beliefs via Plausibility

¬P

w

P

v

Epistemic-Plausibility Model: M = 〈W ,�,V 〉
I w � v means w is at least as plausibility as v . (� is reflexive,

transitive, connected, well-founded)

Language: ϕ := p | ¬ϕ | ϕ ∧ ψ | Bϕψ | [�]ϕ | Aϕ

Truth:

I Max�(X ) = {w ∈ X | there is no v ∈ X such that w ≺ v}
I [[ϕ]]M = {w | M,w |= ϕ}
I M,w |= Bϕψ iff for all v ∈ Max�([[ϕ]]M), M, v |= ψ
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Beliefs via Plausibility

W = {w1,w2,w3}
w2 � w1 and w1 � w2 (w1 and w2

are equi-plausbile)

w3 ≺ w1 (w3 � w1 and w1 6� w3)

w3 ≺ w2 (w3 � w2 and w2 6� w3)

{w1,w2} ⊆ Max�([wi ])
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Beliefs via Plausibility

ψ
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ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M
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Beliefs via Plausibility

ψ

C

D

E

ϕ

Conditional Belief: Bϕψ

Max�([[ϕ]]M) ⊆ [[ψ]]M
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Evidence Models and Plausibility Models

What is the precise relationship between evidence models and
plausibility models?

Three issues

1. Plausibility orders that are not connected

2. Conditional beliefs on evidence models

3. From evidence to plausibility (and back)
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Incomparability in Plausibility Models

In general, we must drop the assumption that � is connected.

Incomparability arises as the result of receiving incompatible
evidence:

Incompatible evidence Compatible evidence
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Conditional Beliefs on Evidence Models
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Conditional Beliefs on Evidence Models

Bϕψ: “the agent believes ψ conditional on ϕ.”

Main idea: Ignore the evidence that is inconsistent with ϕ.

Relativized w-scenario: Suppose that X ⊆W . Given a collection
X ⊆ ℘(W ), let XX = {Y ∩ X | Y ∈ X}. We say that a collection
X of subsets of W has the finite intersection property relative
to X (X -f.i.p.) if, XX as the f.i.p. and is maximal if XX is.

I M,w |= Bϕψ iff for each maximal ϕ-f.i.p. X ⊆ E (w), for
each v ∈

⋂
Xϕ, M, v |= ψ
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Conditional Beliefs: Example
Bψ → Bϕψ is not valid.

Is Bψ → Bϕψ ∨ B¬ϕψ valid? No

X1 Y1

¬p,¬q p, q p,¬q

X2 Y2

p,¬q ¬p, q ¬p,¬q

M,w |= Bq

M,w |= ¬Bpq

M,w |= ¬B¬pq
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Conditional Evidence

�ϕψ: “the agent has evidence for ψ conditional on ϕ being true”.

X ⊆W is consistent (compatible) with ϕ if X ∩ [[ϕ]]M 6= ∅.

I M,w |= 〈 ]ϕψ iff there exists an evidence set X ∈ E (w)
consistent with ϕ such that for all v ∈ X ∩ [[ϕ]]M, M, v |= ψ.

〈 ]ϕψ is not equivalent to 〈 ](ϕ→ ψ): if there is no evidence
consistent with ϕ, then 〈 ]ϕψ is false.

Eric Pacuit 10



Conditional Evidence

�ϕψ: “the agent has evidence for ψ conditional on ϕ being true”.

X ⊆W is consistent (compatible) with ϕ if X ∩ [[ϕ]]M 6= ∅.

I M,w |= 〈 ]ϕψ iff there exists an evidence set X ∈ E (w)
consistent with ϕ such that for all v ∈ X ∩ [[ϕ]]M, M, v |= ψ.

〈 ]ϕψ is not equivalent to 〈 ](ϕ→ ψ): if there is no evidence
consistent with ϕ, then 〈 ]ϕψ is false.

Eric Pacuit 10



Conditional Evidence

�ϕψ: “the agent has evidence for ψ conditional on ϕ being true”.

X ⊆W is consistent (compatible) with ϕ if X ∩ [[ϕ]]M 6= ∅.

I M,w |= 〈 ]ϕψ iff there exists an evidence set X ∈ E (w)
consistent with ϕ such that for all v ∈ X ∩ [[ϕ]]M, M, v |= ψ.

〈 ]ϕψ is not equivalent to 〈 ](ϕ→ ψ): if there is no evidence
consistent with ϕ, then 〈 ]ϕψ is false.

Eric Pacuit 10



Conditional Evidence

�ϕψ: “the agent has evidence for ψ conditional on ϕ being true”.

X ⊆W is consistent (compatible) with ϕ if X ∩ [[ϕ]]M 6= ∅.

I M,w |= 〈 ]ϕψ iff there exists an evidence set X ∈ E (w)
consistent with ϕ such that for all v ∈ X ∩ [[ϕ]]M, M, v |= ψ.

〈 ]ϕψ is not equivalent to 〈 ](ϕ→ ψ): if there is no evidence
consistent with ϕ, then 〈 ]ϕψ is false.

Eric Pacuit 10



Plausibility Models ↪→ Evidence Models

Let M = 〈W ,�,V 〉 be a plausibility model.

The evidence sets are the upwards �-closed sets of worlds.

I Given a X ⊆W , let X↑�= {v ∈W | ∃x ∈ X and x � v}
I A set X ⊆W is �-closed if X↑⊆ X .

Evidence model generated from M: EV (M) = 〈W , E�,V 〉
with E� = {X | ∅ 6= X is �-closed }
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L(�,B,A) is generated by

p | ¬ϕ | ϕ ∧ ψ | [B]ψ | [�]ϕ | [A]ϕ

Suppose that M = 〈W ,�,V 〉 is a plausibility model.

I M,w |= [B]ϕ iff Max�(W ) ⊆ [[ϕ]]M
I M,w |= [�]ϕ iff for all v ∈W , if w � v then M, v |= ϕ

I M,w |= [A]ϕ iff for all v ∈W , M, v |= ϕ.
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On finite plausibility models, the belief modality [B] is definable in
terms of the [A] and [�] modalities:

Bϕ := [A]〈�〉[�]ϕ

The translation tr� : L(〈 ],A)→ L([�],A) is defined as follows:

I for each p ∈ At, tr�(p) = p;

I tr�(¬ϕ) = ¬tr�(ϕ) and tr�(ϕ ∧ ψ) = tr�(ϕ) ∧ tr�(ψ);

I tr�([A]ϕ) = [A](tr�(ϕ)); and

I tr�(〈 ]ϕ) = 〈E 〉[�](tr�(ϕ)).
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Proposition. Let M = 〈W ,�,V 〉 be a plausibility model. For any
ϕ ∈ L(〈 ],A) and state w ∈W ,

M,w |= tr�(ϕ) iff M�,w |= ϕ.
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Evidence Models ↪→ Plausibility Models
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Specialization Order

Suppose that 〈W ,F〉 is a subset space. Define �F ⊆W ×W as
follows:

w �F v iff for all X ∈ F , if w ∈ X , then v ∈ X
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Specialization Order: Example

w1 w2 w3 w4
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M = 〈W ,N,V 〉. For each w ∈W , define a plausibility ordering
�N(w).
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Taking Stock

Language ϕ := p | ¬ϕ | ϕ ∧ ψ | 〈 ]ϕ | [B]ϕ | [A]ϕ | [�]ϕ

General Model: 〈W ,E ,RB ,�,V 〉 where

1. for each w ∈W , ∅ 6∈ E (w) and W ∈ E (w);

2. for all w , v , u ∈W , if w � v and w ∈ X ∈ E (u), then v ∈ X ;

3. for all w , v , u, if w � v and u RB v then u RB w .

Intended Model: 〈W ,E ,V 〉 ↪→ 〈W ,E ,RE
B ,�E ,V 〉 where

1. w RE
B v iff v ∈ ∩X for some w -scenario X

2. w �E v iff whenever u,X are such that w ∈ X ∈ E (u), then
v ∈ X

Eric Pacuit 19
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Given an evidence model M = 〈W ,E ,V 〉, define the extended
model

MM = 〈W ,E ,BE ,�E ,V 〉.

where

I w BE v iff v ∈
⋂
X for some w -scenario X , and

I �E=�∪w∈WE(w) (i.e., w �E v iff for any u,X , if
w ∈ X ∈ E (u), then v ∈ X ).

Say that M is an intended model provided M = 〈W ,E ,V 〉M
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What is the precise relationship between intended models MM and
extended evidence models M = 〈W ,E ,B,�,V 〉.

Lemma. Suppose that M = 〈W ,E ,V 〉 is an evidence model, then
MM is a model according to the above definition.
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Lemma. If M = 〈W , E ,BE ,�E ,V 〉 is uniform and intended, then
for every scenario X and every w ∈

⋂
X , w is �-maximal if and

only if w lies in
⋂
X ′ for some scenario X ′.

Moreover, if M is flat then the sets of the form
⋂
X with X a

scenario are precisely the �E -equivalence classes of maximal worlds.
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The plausibility orders in extended evidence models satisfy an
additional property:

Let � be a plausibility order over W . Say D ⊆W is directed if
any two elements of D have an upper bound in D.

A plausibility order � satisfies the boundendess condition if every
directed set D has an upper bound (not necessarily in D).

Proposition. If an evidence model is flat, then its derived
plausibility relation satisfies the boundedness condition.
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Lemma. If M is flat and �E is its derived plausibility relation,
then for every w there is v such that w �E v and v is maximal.

Theorem. Over the class of uniform evidence models with derived
plausibility relation, [A]〈�〉[�]ϕ→ [B]ϕ is valid.

Over the class of models that are moreover flat, the two formulas
are equivalent.
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Suppose that 〈W ,F〉 is a subset space. Define �F ⊆W ×W as
follows:

w �F v iff for all X ∈ F , if w ∈ X , then v ∈ X

Two ways to generalize:

1. Fw = {X ∈ F | w ∈ X}

w �F v iff Fw ⊆ Fv

2. A set of reasons R ⊆ F may be associated with arbitrary
orderings: R 7→�R.
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F. Dietrich and C. List. Reasons for (prior) belief in Bayesian epistemology. .
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Let D ⊆ ℘(W ) be a set of doxastic reasons.

Each D is associate with a plausibility ordering (reflexive and
transitive) �D

Let D be the space of doxastic reasons. Assume that D is closed
under finite intersections and finite unions.

Eric Pacuit 27



Let D ⊆ ℘(W ) be a set of doxastic reasons.

Each D is associate with a plausibility ordering (reflexive and
transitive) �D

Let D be the space of doxastic reasons. Assume that D is closed
under finite intersections and finite unions.

Eric Pacuit 27



Let D ⊆ ℘(W ) be a set of doxastic reasons.

Each D is associate with a plausibility ordering (reflexive and
transitive) �D

Let D be the space of doxastic reasons. Assume that D is closed
under finite intersections and finite unions.

Eric Pacuit 27



Example

Two NASSLLI participants need to meet in Washington DC at
noon tomorrow, but they did not settle on a location.

Possible meeting points (Doxastic Possibilities):

Union station (u)
Lincoln Memorial (l)
White House (w)
Eric’s House in Chevy Chase (e)

Doxastic Reasons

A = {u}: The place in question is where one arrives in DC
F = {l ,w}: The place in question is world-famous
H = {w , e}: A family lives at the place in question
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A = {u}
F = {l ,w}
H = {w , e}

D = {A,F ,H}: u �D l �D w �D e

D = {A,F}: u �D l ∼D w �D e

D = {A,H}: u �D l �D w ∼D e

D = {F ,H}: l �D w �D u �D e

D = {A}: u �D l ∼D w ∼D e

D = {F}: l ∼D w �D u ∼D e

D = {H}: l ∼D u ∼D w ∼D e

D = ∅: l ∼D w ∼D u ∼D e
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Can we find a credibility ordering ≥ on the space of doxastic
reasons D such that

w �D v iff {R | w ∈ R ∈ D} ≥ {R | v ∈ R ∈ D}?
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Axiom 1 (Principle of insufficient reason): For any w , v ∈W and
any D ∈ D

if {R | w ∈ R ∈ D} = {R | v ∈ R ∈ D}, then w ∼D v

Axiom 2: For any w , v ∈W and any D2,D2 ∈ D with D1 ⊆ D2,

if, [for all R ∈ D2 −D1, w , v 6∈ R], then [w �D1 v ⇔ w �D2 v ]

Theorem (Dietrich and List). The agent’s plausibility orderings
(�D)D∈D satisfies Axiom 1 and Axiom 2 if and only if there is a
credibility ordering ≥ on D such that for all D ∈ D,

w �D v ⇐⇒ {R | w ∈ R ∈ D} ≥ {R | v ∈ R ∈ D}

for all w , v ∈W .

Eric Pacuit 31



A = {u}
F = {l ,w}
H = {w , e}
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Axiom 1 (Principle of insufficient reason): For any w , v ∈W and
any D ∈ D

if {R | w ∈ R ∈ D} = {R | v ∈ R ∈ D}, then w ∼D v

Axiom 2: For any w , v ∈W and any D2,D2 ∈ D with D1 ⊆ D2,

if, [for all R ∈ D2 −D1, w , v 6∈ R], then [w �D1 v ⇔ w �D2 v ]

Theorem (Dietrich and List). The agent’s plausibility orderings
(�D)D∈D satisfies Axiom 1 and Axiom 2 if and only if there is a
credibility ordering ≥ on D such that for all D ∈ D,

w �D v ⇐⇒ {R | w ∈ R ∈ D} ≥ {R | v ∈ R ∈ D}

for all w , v ∈W .
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Core Theory

X Neighborhood Semantics in the Broader Logical Landscape

I Completeness, Decidability, Complexity

I Incompleteness

I Relation with Relational Semantics

I Model Theory
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Useful Fact

Theorem (Uniform Substitution)

The following rule can be derived in E

ψ ↔ ψ′

ϕ↔ ϕ[ψ/ψ′]
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Interesting Fact

Each of K , M and C are logically independent:

I EC 6` K

I EM 6` K

I EMC ` K

I EK 6` M

I EK 6` C
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ϕ ϕ→ ψ
(MP)

ψ

ϕ
(Nec)

�ϕ

ϕ↔ ψ
(RE)

�ϕ↔ �ψ

(ϕ1 ∧ ϕ2)→ ψ
(RR)

(�ϕ1 ∧�ϕ2)→ �ψ

(ϕ1 ∧ · · · ∧ ϕn)→ ψ
(RK) (n ≥ 0)

(�ϕ1 ∧ · · ·�ϕn)→ �ψ
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Some Notation

I A formula ϕ ∈ L is valid in F (|=F ϕ) if for each F ∈ F,
F |= ϕ.

I We say that a logic L is sound with respect to F, provided
`L ϕ implies |=F ϕ.

I A set of formulas Γ semantically entails ϕ with respect to F,
denoted Γ |=F ϕ, if for each F ∈ F, if F |= Γ then F |= ϕ.

I A logic L is weakly complete with respect to a class of frames
F, if |=F ϕ implies `L ϕ.

I A logic L is strongly complete with respect to a class of
frames F, if for each set of formulas Γ, Γ |=F ϕ implies Γ `L ϕ.
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A set of formulas Γ is called a maximally consistent set provided
Γ is a consistent set of formulas and for all formulas ϕ ∈ L, either
ϕ ∈ Γ or ¬ϕ ∈ Γ.

Let ML be the set of L-maximally consistent sets of formulas.

The L-proof set of ϕ ∈ L is |ϕ|L = {Γ | ϕ ∈ Γ}.
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Let L be a logic and ϕ,ψ ∈ L. Then

1. |ϕ ∧ ψ|L = |ϕ|L ∩ |ψ|L
2. |¬ϕ|L = ML − |ϕ|L
3. |ϕ ∨ ψ|L = |ϕ|L ∪ |ψ|L
4. |ϕ|L ⊆ |ψ|L iff `L ϕ→ ψ

5. |ϕ|L = |ψ|L iff `L ϕ↔ ψ

6. For any maximally L-consistent set Γ, if ϕ ∈ Γ and
ϕ→ ψ ∈ Γ, then ψ ∈ Γ

7. For any maximally L-consistent set Γ, If `L ϕ, then ϕ ∈ Γ
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Lindenbaum’s Lemma. For any consistent set of formulas Γ,
there exists a maximally consistent set Γ′ such that Γ ⊆ Γ′.
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Canonical Model

Definition
A neighborhood model M = 〈W ,N,V 〉 is canonical for L provided

I W = { maximally L-consistent sets }

= ML

I for all ϕ ∈ L and Γ ∈W , |ϕ|L ∈ N(Γ) iff �ϕ ∈ Γ

I for all p ∈ At, V (p) = |p|L
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Examples of Canonical Models

Mmin
L = 〈ML,N

min
L ,VL〉, where for each Γ ∈ ML,

Nmin
L (Γ) = {|ϕ|L | �ϕ ∈ Γ}.

Let PL = {|ϕ|L | ϕ ∈ L} be the set of all proof sets.

Mmax
L = 〈ML,N

max
L ,VL〉, where for each Γ ∈ ML,

Nmax
L (Γ) = Nmin

L (Γ) ∪ {X | X ⊆ ML,X 6∈ PL}
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The canonical model works...

Lemma
For any logic L containing the rule RE , if NL : ML → ℘(℘(ML)) is
a function such that for each Γ ∈ ML, |ϕ|L ∈ NL(Γ) iff �ϕ ∈ Γ.
Then if |ϕ|L ∈ NL(Γ) and |ϕ|L = |ψ|L, then �ψ ∈ Γ.

Lemma (Truth Lemma)

For any consistent classical modal logic L and any consistent
formula ϕ, if M is canonical for L,

[[ϕ]]M = |ϕ|L
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The Proofs

Theorem
The logic E is sound and strongly complete with respect to the
class of all neighborhood frames.

Lemma
If C ∈ L, then 〈ML,N

min
L 〉 is closed under finite intersections.

Theorem
The logic EC is sound and strongly complete with respect to the
class of neighborhood frames that are closed under intersections.
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The Proofs

Fact: 〈MEM,N
min
EM 〉 is not closed under supersets.

Lemma
Suppose that M = sup(Mmin

EM). Then M is canonical for EM.

Theorem
The logic EM is sound and strongly complete with respect to the
class of supplemented frames.
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The Proofs

Theorem
The logic K is sound and strongly complete with respect to the
class of filters.

Theorem
The logic K is sound and strongly complete with respect to the
class of augmented frames.
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The Normal Situation

The smallest normal modal logic K consists of

PC Your favorite axioms of PC

K �(ϕ→ ψ)→ �ϕ→ �ψ

Nec
` ϕ
�ϕ

MP
` ϕ→ ψ ` ϕ

ψ

Theorem: K +�ϕ→ ϕ+�ϕ→ ��ϕ is sound and strongly
complete with respect to the class of all reflexive and transitive
Kripke frames.
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Incompleteness

There are (consistent) modal logics that are incomplete:

Theorem Let TMEQ be the following normal modal logic:

I K

I �ϕ→ ϕ

I �♦ϕ→ ♦�ϕ
I ♦(♦ϕ ∧�ψ)→ �(♦ϕ ∨�ϕ)

I (♦ϕ ∧�(ϕ→ �ϕ))→ ϕ

There is no class of frames validating precisely the formulas in
TMEQ.

J. van Benthem. Two Simple Incomplete Modal Logics. Theoria (1978).
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BAO

Definition A boolean algebra with operators is a pair B = 〈A,m〉
where A is a bolean algebra and m is a unary operator on A such
that:

I m(x + y) = m(x) + m(y)

I m(0) = 0

Example: Given a Kripke frame F = 〈W ,R〉, let
A = 〈℘(W ),∩,∪, ·C 〉 and m : ℘(X )→ ℘(X ) is defined as:

m(X ) = {y ∈W | ∃x ∈ X such that yRx}
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where A is a bolean algebra and m is a unary operator on A such
that:

I m(x + y) = m(x) + m(y)

I m(0) = 0

Theorem Any normal modal logic is complete with respect to
some class of boolean algebras with operators. defined as:

m(X ) = {y ∈W | ∃x ∈ X such that yRx}
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General Frames

Definition A general frame is a pair 〈F,A〉 where F = 〈W ,R〉 is a
Kripke frame, and ∅ 6= A ⊆ ℘(W ) is a collection of admissible sets
closed under the following operations:

I union: if X ,Y ∈ A then X ∪ Y ∈ A
I relative complement: if X ∈ A then W − X ∈ A
I modal operations: if X ∈ A then m(X ) ∈ A

Theorem Any normal modal logic L is sound and strongly
complete with respect to some class of general frames.
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Incompleteness?

Are all modal logics complete with respect to some class of
neighborhood frames?

No
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for Modal Logic.
Journal of Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect to
neighborhood semantics.
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Journal of Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect to
neighborhood semantics.

(there are formulas ϕ and ϕ′ that are valid in the class of frames
for L and L′ respectively, but ϕ and ϕ′ are not deducible in the
respective logics).
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for Modal Logic.
Journal of Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect to
neighborhood semantics.

L is between T and S4

L′ is above S4 (adapts Fine’s incomplete logic)
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Ai = �(qi → r) (i = 1, 2)

Bi = �(r → ♦qi ) (i = 1, 2)

C1 = �¬(q1 ∧ q2)

A = r ∧�p ∧ ¬��p ∧ A1 ∧ A2 ∧ B1 ∧ B2∧
C1 → ♦(r ∧�(r → (q1 ∨ q2))

D = (p ∧ ♦♦q)→ (♦q ∨ ♦♦(q ∧ ♦p))

E = (�p ∧ ¬��p)→ ♦(��p ∧ ¬���p)

F = �p → ��p

Let L be the logic obtained by adding A, D, and E as additional
axioms to T.

Theorem. (Gerson) The formula F is valid in all neighborhood
frames for L, but it is not provable in L.
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Comparing Relational and Neighborhood Semantics
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Comparing Relational and Neighborhood Semantics

Fact: If a (normal) modal logic is complete with respect to some
class of relational frames then it is complete with respect to some
class of neighborhood frames.

What about the converse?

Are there normal modal logics that are incomplete with respect to
relational semantics, but complete with respect to neighborhood
semantics?
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What about the converse?
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relational semantics, but complete with respect to neighborhood
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Comparing Relational and Neighborhood Semantics

Neighborhood completeness does not imply Kripke completeness

I extension of K

D. Gabbay. A normal logic that is complete for neighborhood frames but not for
Kripke frames. Theoria (1975).

I extension of T

M. Gerson. A Neighbourhood frame for T with no equivalent relational frame.
Zeitschr. J. Math. Logik und Grundlagen (1976).

I extension of S4

M. Gerson. An Extension of S4 Complete for the Neighbourhood Semantics
but Incomplete for the Relational Semantics. Studia Logica (1975).
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The general situation is not very well understood.

Notable exceptions:

L. Chagrova. On the Degree of Neighborhood Incompleteness of Normal Modal
Logics. AiML 1 (1998).

V. Shehtman. On Strong Neighbourhood Completeness of Modal and Interme-
diate Propositional Logics (Part I). AiML 1 (1998).

T. Litak. Modal Incompleteness Revisited. Studia Logica (2004).
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Recovering Completeness

Definition
A general neighborhood frame is a tuple Fg = 〈W ,N,A〉, where
〈W ,N〉 is a neighborhood frame and A is a collection of subsets of
W closed under intersections, complements, and the mN operator.
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Definition
Suppose that Fg = 〈W ,N,A〉 is a general neighborhood frame. A
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Recovering Completeness

Definition
A general neighborhood frame is a tuple Fg = 〈W ,N,A〉, where
〈W ,N〉 is a neighborhood frame and A is a collection of subsets of
W closed under intersections, complements, and the mN operator.

Lemma
Let L be any logic extending E. Then the general canonical frame
validates L (Fg

L |= L).

Corollary

Any modal logic extending E is strongly complete with respect to
some class of general frames.
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Summary

For any modal logic L:

I If L is Kripke complete, then it is neighborhood complete

I If L is neighborhood complete, then it is algebraically complete

I L is complete with respect to its class of general frames

There are modal logics showing that

I neighborhood completeness does not imply Kripke
completeness

I algebraic completeness does not imply neighborhood
completeness
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End of lecture 3
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