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Neighborhood Frames

Let W be a non-empty set of states.

Any function N : W → ℘(℘(W )) is called a neighborhood function

A pair 〈W ,N〉 is a called a neighborhood frame if W a non-empty
set and N is a neighborhood function.

A neighborhood model based on F = 〈W ,N〉 is a tuple 〈W ,N,V 〉
where V : At→ ℘(W ) is a valuation function.
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Truth in a Model

I M,w |= p iff w ∈ V (p)

I M,w |= ¬ϕ iff M,w 6|= ϕ

I M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

I M,w |= �ϕ iff [[ϕ]]M ∈ N(w)

I M,w |= ♦ϕ iff W − [[ϕ]]M 6∈ N(w)

where [[ϕ]]M = {w | M,w |= ϕ}.
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Let N : W → ℘℘W be a neighborhood function and define
mN : ℘W → ℘W :

for X ⊆W , mN(X ) = {w | X ∈ N(w)}

1. [[p]]M = V (p) for p ∈ At

2. [[¬ϕ]]M = W − [[ϕ]]M

3. [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M

4. [[�ϕ]]M = mN([[ϕ]]M)

5. [[♦ϕ]]M = W −mN(W − [[ϕ]]M)
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Detailed Example

Suppose W = {w , s, v} is the set of states and define a
neighborhood model M = 〈W ,N,V 〉 as follows:

I N(w) = {{s}, {v}, {w , v}}
I N(s) = {{w , v}, {w}, {w , s}}
I N(v) = {{s, v}, {w}, ∅}

Further suppose that V (p) = {w , s} and V (q) = {s, v}.

w s v

{s} {v} {w , v} {w , s} {w} {s, v} ∅
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Detailed Example

V (p) = {w , s} and V (q) = {s, v}

w s v
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M, s |= �p
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Detailed Example
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Detailed Example

V (p) = {w , s} and V (q) = {s, v}

w s v

{s} {v} {w , v} {w , s} {w} {s, v} ∅

M, s |= ♦p

[[¬p]]M = {v}
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Detailed Example
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Other modal operators

I M,w |= 〈 〉ϕ iff ∃X ∈ N(w) such that ∃v ∈ X , M, v |= ϕ

I M,w |= [ ]ϕ iff ∀X ∈ N(w) such that ∀v ∈ X , M, v |= ϕ

I M,w |= 〈 ]ϕ iff ∃X ∈ N(w) such that ∀v ∈ X , M, v |= ϕ

I M,w |= [ 〉ϕ iff ∀X ∈ N(w) such that ∃v ∈ X , M, v |= ϕ
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Other modal operators

I M,w |= 〈 ]ϕ iff ∃X ∈ N(w) such that ∀v ∈ X , M, v |= ϕ

I M,w |= [ 〉ϕ iff ∀X ∈ N(w) such that ∃v ∈ X , M, v |= ϕ

Lemma
Let M = 〈W ,N,V 〉 be a neighborhood model. The for each
w ∈W ,

1. if M,w |= �ϕ then M,w |= 〈 ]ϕ

2. if M,w |= [ 〉ϕ then M,w |= ♦ϕ
However, the converses of the above statements are false.
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Other modal operators

I M,w |= 〈 ]ϕ iff ∃X ∈ N(w) such that ∀v ∈ X , M, v |= ϕ

I M,w |= [ 〉ϕ iff ∀X ∈ N(w) such that ∃v ∈ X , M, v |= ϕ

Lemma

1. If ϕ→ ψ is valid in M, then so is 〈 ]ϕ→ 〈 ]ψ.

2. 〈 ](ϕ ∧ ψ)→ (〈 ]ϕ ∧ 〈 ]ψ) is valid in M

Investigate analogous results for the other modal operators defined
above.
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Two routes to a logical framework

X Identify interesting patterns that you (do not) want to
represent

2. Identify interesting structures that you want to reason about
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A (Dynamic) Logic of Knowledge, Evidence and Belief

J. van Benthem and EP. Dynamic Logics of Evidence-Based Beliefs. Studia
Logica, 99, pp. 61 - 92, 2011.

J. van Benthem, D. Fernández-Duque and EP. Evidence Logic: A New Look
at Neighborhood Structures. Proceedings of Advances in Modal Logic, King’s
College Publications, 2012.

J. van Benthem, D. Fernández-Duque and EP. Evidence and Plausibility in Neigh-
borhood Structures. Annals of Pure and Applied Logic, 2013.
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Setting the Stage: Evidence

I Dempster-Shafer Theory of Evidence

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

I Bayesian Confirmation Theory (eg., E confirms H iff
p(H | E ) > p(H))

B. Fitelson. The Plurality of Bayesian Measures of Confirmation and the Problem
of Measure Sensitivity. Philosophy of Science 66, 1999.
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Setting the Stage: Evidence

I Artemov/Fitting’s Justification Logic (t :ϕ: “t is a
justification/proof for ϕ”)

S. Artemov and M. Fitting. Justification logic. The Stanford Encyclopedia of
Philosophy, 2012.

I Moss and Parikh’s “topologic” (x ,U |= ϕ: “ϕ is true at the
state x given that the current evidence/“measurement”
gathered is U”)

L. Moss and R. Parikh. Topological reasoning and the logic of knowledge. Pro-
ceedings of TARK IV, Morgan Kaufmann, 1992.
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Setting the Stage: Reasons

I Kratzer Semantics (modal base), believing for a reason
(deriving an ordering on worlds from an ordering over
propositions)

A. Kratzer. What must and can must and can mean. Linguistics and Philosophy
1 (1977) 337355.

C. List and F. Dietrich. Reasons for (prior) belief in bayesian epistemology. 2012.

I Reason management (Default logic with priorities)

J. Horty. Reasons as Defaults. 2012.
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Modeling Evidence: Some Distinctions

Barest view: the evidence is encoded as the current range of worlds
the agent considers possible

Ignores how we arrived at this epistemic state

Richest view: complete syntactic details of what we have learned
so far (including the sources of each piece of evidence)

In between: family of subsets representing evidence from received
from various (possible unreliable) sources
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Evidence Models: Basic Assumptions

Let W be a set of possible worlds or states one of which represents
the “actual” situation.

1. Sources may or may not be reliable: a subset recording a piece
of evidence need not contain the actual world. Also, agents
need not know which evidence is reliable.

2. The evidence gathered from different sources (or even the
same source) may be jointly inconsistent. And so, the
intersection of all the gathered evidence may be empty.

3. Despite the fact that sources may not be reliable or jointly
inconsistent, they are all the agent has for forming beliefs.
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Evidential States

An evidential state is a collection of subsets of W .

Assumptions:

I No evidence set is empty (no contradictory evidence),

I The whole universe W is an evidence set (agents know their
‘space’).

In addition, much of the literature would suggest a ‘monotonicity’
assumption:

If the agent has evidence X and X ⊆ Y then the agent
has evidence Y .
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Example: W = {w , v} where p is true only at w

w v

There is no evidence
for or against p.

w v

There is evidence
that supports p.

w v

There is evidence
that rejects p.

w v

There is evidence that
supports p and also evi-
dence that rejects p.
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Evidence Models

Evidence model: M = 〈W ,E ,V 〉
I W is a non-empty set of worlds,

I V : At→ ℘(W ) is a valuation function, and

I E : W → ℘(℘(W )) is an evidence relation

X ∈ E (w): “the agent accepts X as evidence at state w”.

Uniform evidence model (E is a constant function):
〈W , E ,V 〉,w where E is the fixed family of subsets of W related
to each state by E .
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Assumptions

(Cons) For each state w , ∅ 6∈ E (w).

(Triv) For each state w , W ∈ E (w).
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The Basic Language L of Evidence and Belief

p | ¬ϕ | ϕ ∧ ψ | 〈 ]ϕ | [B]ϕ | [A]ϕ

I 〈 ]ϕ says that “the agent has evidence that ϕ is true” (i.e.,
“the agent has evidence for ϕ”)

I [B]ϕ says that “the agents believes that ϕ is true” (based on
her evidence)

I [A]ϕ says that “ϕ is true in all states” (which we interpret as
the agent’s knowledge)
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Truth

I M,w |= p iff w ∈ V (p) (p ∈ At)

I M,w |= ¬ϕ iff M,w 6|= ϕ

I M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

I M,w |= 〈 ]ϕ iff there exists X such that X ∈ E (w) and for
all v ∈ X , M, v |= ϕ

I M,w |= [A]ϕ iff for all v ∈W , M, v |= ϕ
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“Having evidence for ϕ” vs. “Accepting ϕ as evidence”

We do not assume that the evidence sets are closed under
supersets, though our semantic definition implies that the set of
propositions that the agent has evidence for is closed under
weakening.

So, an agent can have evidence for X without accepting the set X
as evidence.
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Defining Beliefs

w-scenario: A maximal family of evidence sets X ⊆ E (w) that
has the finite intersection property (f.i.p.: for each finite
subfamily {X1, . . . ,Xn} ⊆ X ,

⋂
1≤i≤n Xi 6= ∅).

An agent believes ϕ at w if each w -scenario implies that ϕ is true
(i.e., ϕ is true at each point in the intersection of each
w -scenario).
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Defining Beliefs

X0

X1

X2

X3

X4X5

X6

X7

X8

Our definition of belief is very conservative, many other defini-
tions are possible (there exists a w-scenario, “most” of the w-
scenarios,...)
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Truth
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I M,w |= ¬ϕ iff M,w 6|= ϕ

I M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

I M,w |= 〈 ]ϕ iff there exists X such that wEX and for all
v ∈ X , M, v |= ϕ

I M,w |= [A]ϕ iff for all v ∈W , M, v |= ϕ

I M,w |= [B]ϕ for all w -scenarios X ⊆ E (w), for all v ∈
⋂
X ,

M, v |= ϕ

Notation for the truth set: [[ϕ]]M = {w | M,w |= ϕ}
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Flat Evidence Models

An evidence model M is flat if every scenario on M has
non-empty intersection.

Proposition. The formula 〈 ]ϕ→ 〈B〉ϕ is valid on the class of flat
evidence models, but not on the class of all evidence models.
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1. Prove that 〈 ]ϕ ∧ [A]ψ ↔ 〈 ](ϕ ∧ [A]ψ) is valid on all evidence
models.

2. Prove that [B]ϕ→ [A][B]ϕ is valid on all uniform evidence
models.

3. Show that 〈 ]ϕ→ 〈 ]〈 ]ϕ is only valid on uniform evidence
models.
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Coalitional Logic

M. Pauly. A Modal Logic for Coalitional Powers in Games. Journal of Logic and
Computation, 12:1, pp. 149 - 166, 2002.

M. Pauly. Logic for Social Software. PhD Thesis, Institute for Logic, Language
and Computation, 2001.
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Strategic Game Forms

〈N, {Si}i∈N ,O, o〉

I N is a finite set of players;

I for each i ∈ N, Si is a non-empty set (elements of which are
called actions or strategies);

I O is a non-empty set (elements of which are called
outcomes); and

I o : Πi∈NSi → O is a function assigning an outcome
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Bob

A
nn

U t1 t2 C

s1 o1 o2 U

s2 o2 o3 U

s3 o4 o1 U
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α-Effectivity

S = Πi∈NSi are called strategy profiles. Given a strategy profile
s ∈ S , let si denote i ’s component and s−i the profile of strategies
from s for all players except i .

A strategy for a coalition C is a sequence of strategies for each
player in C , i.e., sC ∈ Πi∈CSi (similarly for sC , where C is N − C ).

Suppose that G = 〈N, {Si}i∈N ,O, o〉 be a strategic game form.
An α-effectivity function is a map Eα

G : ℘(N)→ ℘(℘(O)) defined
as follows: For all C ⊆ N, X ∈ Eα

G (C ) iff there exists a strategy
profile sC such that for all sC ∈ Πi∈N−CSi , o(sC , sC ) ∈ X .
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G (C ) iff there exists a strategy
profile sC such that for all sC ∈ Πi∈N−CSi , o(sC , sC ) ∈ X .
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α-Effectivity vs. β-Effectivity

∃ “something a player/a coalition can do” such that ∀ “actions of
the other players/nature”...

∀ “(joint) actions of the other players”, ∃ “something the
agent/coalition can do”...
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Bob

A
nn

U t1 t2 C

s1 o1 o2 U

s2 o2 o3 U

s3 o4 o1 U

Eα
G0

({A}) = sup({{o1, o2}, {o2, o3}, {o1, o4}})

Eα
G0

({B}) = sup({{o1, o2, o4}, {o1, o2, o3}})

Eα
G0

({A,B}) = sup({o1}, {o2}, {o3}, {o4}}) = ℘(O)− ∅

Eα
G0

(∅) = {{o1, o2, o3, o4, o5, o6}}
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Playable Effectivity Functions

1. (Liveness) For all C ⊆ N, ∅ 6∈ E (C )

2. (Safety) For all C ⊆ N, O ∈ E (C )

3. (N-maximality) For all X ⊆ O, if X ∈ E (N) then X 6∈ E (∅)

4. (Outcome-monotonicity) For all X ⊆ X ′ ⊆ O, and C ⊆ N, if
X ∈ E (C ) then X ′ ∈ E (C )

5. (Superadditivity) For all subsets X1,X2 of O and sets of
agents C1,C2, if C1 ∩ C2 = ∅, X1 ∈ E (C1) and X2 ∈ E (C2),
then X1 ∩ X2 ∈ E (C1 ∪ C2)
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E ({i}) = {X | X ⊆ N is infinite};
E (∅) = {X | X ⊆ N is cofinite (i.e., X is finite)};

Claim. E satisfies Liveness, Safety, N-maximality, Outcome
Monotonicity, Superadditivity, but is not the effectivity function of
any game.
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Core-Complete

Suppose that (W ,F) is a monotonic subset space. The
non-monotonic core, denoted Fnc , is a subset of F defined as
follows:

Fnc = {X | X ∈ F and for all X ′ ⊆W , if X ′ ⊆ X , then X ′ 6∈ F}.

Does every subset space (W ,F) have a non-monotonic core?

No.

A monotonic collection of sets F is core-complete provided for all
X ∈ F , there exists a Y ∈ Fnc such that Y ⊆ X .
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Observation. Suppose that G = 〈N, {Si}i∈N ,O, o〉 is a strategic
game form and Eα

G is the associated α-effectivity function. Then
the non-monotonic core of Eα

G (∅) = {range(o)}, where
range(o) = {x ∈ O | there is a s ∈ Πi∈NSi such that o(s) = x}.

Claim. If E (∅) = {Y | Y is co-finite}, then Enc(∅) = ∅.

6. (Empty Coalition) E (∅) is core complete.
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Characterizing Playable Effectivity Functions

Theorem (Pauly 2001; Goranko, Jamorga and Turrini 2013). If
E : ℘(N)→ ℘(℘(O)) is a function that satisfies the conditions 1-6
given above, then E = Eα

G for some strategic game form.

V. Goranko, W. Jamroga, and P. Turrini. Strategic Games and Truly Playable
Effectivity Functions. Journal of Autonomous Agents and Multiagent Systems,
26(2), pgs. 288 - 314, 2013.

M. Pauly. Logic for Social Software. PhD Thesis, Institute for Logic, Language
and Computation, 2001.
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Coalitional Models

A coalitional logic model is a tuple M = 〈W ,E ,V 〉 where W is a
set of states, E : W → (℘(N)→ ℘(℘(W ))) assigns to each state a
playable effectivity function, and V : At→ ℘(W ) is a valuation
function.

M,w |= [C ]ϕ iff [[ϕ]]M = {w | M,w |= ϕ} ∈ E (w)(C )
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Coalitional Logic: Axiomatics

1. (Liveness) For all C ⊆ N, ∅ 6∈ E (C )

2. (Safety) For all C ⊆ N, O ∈ E (C )

3. (N-maximality) For all X ⊆ O, if X ∈ E (N) then X 6∈ E (∅)

4. (Outcome-monotonicity) For all X ⊆ X ′ ⊆ O, and C ⊆ N, if
X ∈ E (C ) then X ′ ∈ E (C )

5. (Superadditivity) For all subsets X1,X2 of O and sets of
agents C1,C2, if C1 ∩ C2 = ∅, X1 ∈ E (C1) and X2 ∈ E (C2),
then X1 ∩ X2 ∈ E (C1 ∪ C2)
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4. (Outcome-monotonicity) [C ](ϕ ∧ ψ)→ ([C ]ϕ ∧ [C ]ψ) asdf
asdf asdf asdf asdf asdf asdfasdf asdf

5. (Superadditivity) ([C1]ϕ1 ∧ [C2]ϕ2)→ [C1 ∪ C2](ϕ1 ∧ ϕ2),
where C1 ∩ C2 = ∅ asdf asdf as df asd fa sdf asdf asdf asdf
asdf asdf asdfasdf asdf
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Subset Space Models

L. Moss and R. Parikh. Topological Reasoning and The Logic of Knowledge.
TARK (1992).
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Subset Models

A Subset Frame is a pair 〈W ,O〉 where

I W is a set of states

I O ⊆ ℘(W ) is a set of subsets of W , i.e., a set of observations

Neighborhood Situation: Given a subset frame 〈W ,O〉, (w ,U)
is called a neighborhood situation, provided w ∈ U and U ∈ O.

Model: 〈W ,O,V 〉, where V : At→ ℘(W ) is a valuation
function.

Language: ϕ := p | ϕ ∧ ϕ | ¬ϕ | Kϕ | ♦ϕ.
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Truth in a subset model

w ,U |= ϕ with w ∈ U is defined as follows:

I w ,U |= p iff w ∈ V (p)

I w ,U |= ¬ϕ iff w ,U 6|= ϕ

I w ,U |= ϕ ∧ ψ iff w ,U |= ϕ and w ,U |= ψ

I w ,U |= Kϕ iff for all v ∈ U, v ,U |= ϕ

I w ,U |= ♦ϕ iff there is a V ∈ O such that w ∈ V and
w ,V |= ϕ
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Axioms

1. All propositional tautologies

2. (p → �p) ∧ (¬p → �¬p), for p ∈ At.

3. �(ϕ→ ψ)→ (�ϕ→ �ψ)

4. �ϕ→ ϕ

5. �ϕ→ ��ϕ
6. K (ϕ→ ψ)→ (Kϕ→ Kψ)

7. Kϕ→ ϕ

8. Kϕ→ KKϕ

9. ¬Kϕ→ K¬Kϕ

10. K�ϕ→ �Kϕ

We include the following rules: modus ponens, Ki -necessitation
and �-necessitation.
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Theorem
The previous axioms are sound and complete for the class of all
subset models.

L. Moss and R. Parikh. Topological Reasoning and The Logic of Knowledge.
TARK (1992).
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Fact: �♦ϕ→ ♦�ϕ is sound for spaces closed under intersections.

Fact: ♦ϕ ∧ L♦ψ → ♦[♦ϕ ∧ L♦ψ ∧ K♦L(ϕ ∨ ψ)] is sound for
spaces closed under binary unions.

Eric Pacuit 44



Overview of Results

I (Georgatos: 1993, 1994, 1997) completely axiomatized
Topologic where O is restricted to a topology and showed
that the logic has the finite model property. Similarly for
treelike spaces.

I (Weiss and Parikh: 2002) showed that an infinite number of
axiom schemes is required to axiomatize Topologics in which
O is closed under intersection.

I (Heinemann: 1999, 2001, 2003, 2004) has a number of papers
in which temporal operators are added to the language. He
also worked on Hybrid versions of Topologic (added nominals
representing neighborhood situations)
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Plan

X Introductory Remarks

X Background: Relational Semantics for Modal Logic

X Why Non-Normal Modal Logic?

X Fundamentals

X Subset Spaces
X Neighborhood Semantics

X Why Neighborhood Semantics?
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Plan

I Neighborhood Semantics in the Broader Logical Landscape

I Completeness, Decidability, Complexity

I Incompleteness

I Relation with Relational Semantics

I Model Theory
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The Broader Logical Landscape

I Relational Models

I Topological Models

I n-ary Relational Structures

I Plausibility Structures

I First-Order Logic
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From Kripke Frames to Neighborhood Frames

Let R ⊆W ×W , define a map R→ : W → ℘W :

for each w ∈W , let R→(w) = {v | wRv}
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Let R ⊆W ×W , define a map R→ : W → ℘W :

for each w ∈W , let R→(w) = {v | wRv}

Definition
Given a relation R on a set W and a state w ∈W . A set X ⊆W
is R-necessary at w if R→(w) ⊆ X .
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From Kripke Frames to Neighborhood Frames

Let R ⊆W ×W , define a map R→ : W → ℘W :

for each w ∈W , let R→(w) = {v | wRv}

Let NR
w be the set of sets that are R-necessary at w :

NR
w = {X | R→(w) ⊆ X}

Lemma
Let R be a relation on W . Then for each w ∈W , NR

w is
augmented.
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From Kripke Frames to Neighborhood Frames

Properties of R are reflected in NR
w :

I If R is reflexive, then for each w ∈W , w ∈ ∩Nw

I If R is transitive then for each w ∈W , if X ∈ Nw , then
{v | X ∈ Nv} ∈ Nw .
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From Neighborhood Frames to Kripke Frames

Theorem

I Let 〈W ,R〉 be a relational frame. Then there is an equivalent
augmented neighborhood frame.

I Let 〈W ,N〉 be an augmented neighborhood frame. Then
there is an equivalent relational frame.

Theorem
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augmented neighborhood frame.

I Let 〈W ,N〉 be an augmented neighborhood frame. Then
there is an equivalent relational frame.

for all X ⊆W , X ∈ N(w) iff X ∈ NR
w .

Theorem
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Proof.
For each w ∈W , let N(w) = NR

w .

Theorem
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Proof.
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Topological Models for Modal Logic

Definition
Topological Space A topological space is a neighborhood frame
〈W , T 〉 where W is a nonempty set and

1. W ∈ T , ∅ ∈W

2. T is closed under finite intersections

3. T is closed under arbitrary unions.
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Definition
Topological Space A topological space is a neighborhood frame
〈W , T 〉 where W is a nonempty set and

1. W ∈ T , ∅ ∈W

2. T is closed under finite intersections

3. T is closed under arbitrary unions.

A neighborhood of w is any set X such that there is an O ∈ T
with w ∈ O ⊆ N

Let Tw be the collection of all neighborhoods of w .
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Topological Models for Modal Logic

Definition
Topological Space A topological space is a neighborhood frame
〈W , T 〉 where W is a nonempty set and

1. W ∈ T , ∅ ∈W

2. T is closed under finite intersections

3. T is closed under arbitrary unions.

Lemma
Let 〈W , T 〉 be a topological space. Then for each w ∈W , the
collection Tw contains W , is closed under finite intersections and
closed under arbitrary unions.
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Topological Models for Modal Logic

The largest open subset of X is called the interior of X , denoted
Int(X ). Formally,

Int(X ) = ∪{O | O ∈ T and O ⊆ X}

The smallest closed set containing X is called the closure of X ,
denoted Cl(X ). Formally,

Cl(X ) = ∩{C | W − C ∈ T and X ⊆ C}
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Topological Models for Modal Logic

I Int(X ) = ∪{O | O ∈ T and O ⊆ X}
I Cl(X ) = ∩{C | W − C ∈ T and X ⊆ C}

Lemma
Let 〈W , T 〉 be a topological space and X ⊆W . Then

1. Int(X ∩ Y ) = Int(X ) ∩ Int(Y )

2. Int(∅) = ∅, Int(W ) = W

3. Int(X ) ⊆ X

4. Int(Int(X )) = Int(X )

5. Int(X ) = W − Cl(W − X )
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Topological Models for Modal Logic

I Int(X ) = ∪{O | O ∈ T and O ⊆ X}
I Cl(X ) = ∩{C | W − C ∈ T and X ⊆ C}

Lemma
Let 〈W , T 〉 be a topological space and X ⊆W . Then

1. �(ϕ ∧ ψ)↔ �ϕ ∧�ψ
2. �⊥ ↔ ⊥,�> ↔ >
3. �ϕ→ ϕ

4. ��ϕ↔ �ϕ
5. �ϕ↔ ¬♦¬ϕ
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Topological Models for Modal Logic

A topological model is a triple 〈W , T ,V 〉 where 〈W , T 〉 is a
topological space and V a valuation function.
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Topological Models for Modal Logic

A topological model is a triple 〈W , T ,V 〉 where 〈W , T 〉 is a
topological space and V a valuation function.

MT ,w |= �ϕ iff ∃O ∈ T ,w ∈ O such that ∀v ∈ O,MT , v |= ϕ

(�ϕ)M
T

= Int((ϕ)M
T

)
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From Neighborhoods to Topologies

Eric Pacuit 52



From Neighborhoods to Topologies

A family B of subsets of W is called a basis for a topology T if
every open set can be represented as the union of elements of a
subset of B
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From Neighborhoods to Topologies

A family B of subsets of W is called a basis for a topology T if
every open set can be represented as the union of elements of a
subset of B

Fact: A family B of subsets of W is a basis for some topology if

I for each w ∈W there is a U ∈ B such that w ∈ U

I for each U,V ∈ B, if w ∈ U ∩ V then there is a W ∈ B such
that w ∈W ⊆ U ∩ V

Eric Pacuit 52



From Neighborhoods to Topologies

A family B of subsets of W is called a basis for a topology T if
every open set can be represented as the union of elements of a
subset of B

Let M = 〈W ,N,V 〉 be a neighborhood models. Suppose that N
satisfies the following properties

I for each w ∈W , N(w) is a filter

I for each w ∈W , w ∈ ∩N(w)

I for each w ∈W and X ⊆W , if X ∈ N(w), then
mN(X ) ∈ N(w)

Then there is a topological model that is point-wise equivalent to
M.
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J. van Benthem and G. Bezhanishvili. Modal Logics of Space. Handbook of
Spatial Logics, pgs. 217 - 298, 2007.
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Generalized Relational Models

I n-ary relations

I multiple relations

I non-normal worlds
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n-ary Relations

(�ϕ ∧�ψ)→ �(ϕ ∧ ψ)

An n-ary relational model is a tuple 〈W ,R,V 〉 where W is a
non-empty set and R ⊆W n is an n-ary relation (R ⊆W n) and
V : At→ ℘(W ) is a valuation function. (Assume n ≥ 2)

I Mn,w |= �ϕ iff for all (w1, . . . ,wn−1) ∈W n−1, if
(w ,w1, . . . ,wn) ∈ R, then there exists i such that 1 ≤ i ≤ n
and Mn,wi |= ϕ.

I Mn,w |= ♦ϕ iff there exists (w1, . . . ,wn) ∈W n−2 such that
(w ,w1, . . . ,wn) ∈ R, and for all i such that 1 ≤ i ≤ n, we
have Mn,wi |= ϕ.
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w1

p, r

w2

q, r

w3 p, r

w4

q

w5

q, r

w7

p

w6

M3,w1 |= �p (and M3,w1 |= �¬p)

M3,w1 |= �q (and M3,w1 |= �¬q)

M3,w1 6|= �(p ∧ q)

M3,w1 |= �r

M3,w1 |= �((p ∧ r) ∨ (q ∧ r))

Eric Pacuit 56



w1

p, r

w2

q, r

w3 p, r

w4

q

w5

q, r

w7

p

w6

I M3,w1 |= �p (and M3,w1 |= �¬p)

M3,w1 |= �q (and M3,w1 |= �¬q)

M3,w1 6|= �(p ∧ q)

M3,w1 |= �r

M3,w1 |= �((p ∧ r) ∨ (q ∧ r))

Eric Pacuit 56



w1

p, r

w2

q, r

w3 p, r

w4

q

w5

q, r

w7

p

w6

I M3,w1 |= �p (and M3,w1 |= �¬p)
I M3,w1 |= �q (and M3,w1 |= �¬q)

M3,w1 6|= �(p ∧ q)

M3,w1 |= �r

M3,w1 |= �((p ∧ r) ∨ (q ∧ r))

Eric Pacuit 56



w1

p, r

w2

q, r

w3 p, r

w4

q

w5

q, r

w7

p

w6

I M3,w1 |= �p (and M3,w1 |= �¬p)
I M3,w1 |= �q (and M3,w1 |= �¬q)
I M3,w1 6|= �(p ∧ q)

M3,w1 |= �r

M3,w1 |= �((p ∧ r) ∨ (q ∧ r))

Eric Pacuit 56



w1

p, r

w2

q, r

w3 p, r

w4

q

w5

q, r

w7

p

w6

I M3,w1 |= �p (and M3,w1 |= �¬p)
I M3,w1 |= �q (and M3,w1 |= �¬q)
I M3,w1 6|= �(p ∧ q)
I M3,w1 |= �r

M3,w1 |= �((p ∧ r) ∨ (q ∧ r))

Eric Pacuit 56



w1

p, r

w2

q, r

w3 p, r

w4

q

w5

q, r

w7

p

w6

I M3,w1 |= �p (and M3,w1 |= �¬p)
I M3,w1 |= �q (and M3,w1 |= �¬q)
I M3,w1 6|= �(p ∧ q)
I M3,w1 |= �r
I M3,w1 |= �((p ∧ r) ∨ (q ∧ r))

Eric Pacuit 56



(Cn)
n∧

i=1

�ϕi → �
∨

1≤k,l≤n,k 6=l

(ϕk ∧ ϕl)

Example:
(�ϕ1 ∧�ϕ2 ∧�ϕ3)→ �((ϕ1 ∧ ϕ2) ∨ (ϕ2 ∧ ϕ3) ∨ (ϕ1 ∧ ϕ3))
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Suppose that L(Cn) = {ϕ ∈ L(At) | for all Fn ∈ Cn, Fn |= ϕ}.

EMN =
⋂
n≥2

L(Cn)

Theorem. The logic EMNCn is sound and complete for the class
Cn of n-ary relational frames.
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Proposition. Suppose that M = 〈W ,N,V 〉 is finite monotonic
neighborhood model such that for all w ∈W , N(w) 6= ∅. Then,
there is an n-ary relational model MN = 〈W N ,RN ,V N〉 that is
modally equivalent to M.

Proposition. Suppose that Mn = 〈W ,R,V 〉 is a finite n-ary
relational model. Then, there is a finite monotonic neighborhood
model MR = 〈W R ,NR ,V R〉 that is modally equivalent to Mn.
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Multi-Relational Semantics/Non-Normal Modal Logics

A multi-relational Kripke model is a triple M = 〈W ,R,V 〉 where
R ⊆ ℘(W ×W ).
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Are multi-relational semantics equivalent to neighborhood
semantics?
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Multi-Relational Semantics/Non-Normal Modal Logics

A multi-relational Kripke model is a triple M = 〈W ,R,V 〉 where
R ⊆ ℘(W ×W ).

M,w |= �ϕ iff ∃R ∈ R such that ∀v ∈W , if wRv then M, v |= ϕ.

Are multi-relational semantics equivalent to neighborhood
semantics? Almost
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Multi-Relational Semantics/Non-Normal Modal Logics

A multi-relational Kripke model is a triple M = 〈W ,R,V 〉 where
R ⊆ ℘(W ×W ).

M,w |= �ϕ iff ∃R ∈ R such that ∀v ∈W , if wRv then M, v |= ϕ.

A world is called impossible if nothing is necessary and everything
is possible.
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A multi-relational model with impossible worlds is a quadruple
M = 〈W ,Q,R,V 〉.
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Multi-Relational Semantics/Non-Normal Modal Logics

A multi-relational Kripke model is a triple M = 〈W ,R,V 〉 where
R ⊆ ℘(W ×W ).

M,w |= �ϕ iff ∃R ∈ R such that ∀v ∈W , if wRv then M, v |= ϕ.

w is an impossible world iff N(w) = ∅

A multi-relational model with impossible worlds is a quadruple
M = 〈W ,Q,R,V 〉.

M,w |= �ϕ iff w 6∈ Q and ∃R ∈ R such that ∀v ∈W , if wRv
then M, v |= ϕ.
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Multi-Relational Semantics/Non-Normal Modal Logics

M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Synthese Library,
1983.

L. Goble. Multiplex semantics for Deontic Logic. Nordic Journal of Philosophical
Logic, 5(2), pgs. 113-134, 2000.

G. Governatori and A. Rotolo. On the axiomatization of Elgesem’s logic of
agency and ability. Journal of Philosophical Logic, 34(4), pgs. 403 - 431, 2005.
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Let ThL(M,w) = {ϕ ∈ L | M,w |= ϕ}

Suppose that M and M′ are two classes of models for L. Say that
M,w is L-equivalent to M′,w ′, denoted M,w ≡LM′,w ′,
provided ThL(M,w) = ThL(M′,w ′).

A class of models M is L-equivalent to a class of models M′

provided for each pointed model M,w from M, there exists a
pointed model M′,w ′ from M′ such that M,w ≡LM′,w ′, and
vice versa.
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I The class K = {M | M is a relational model } is modally
equivalent to the class
Maug = {M | M is an augmented neighborhood model}

I The class Kn = {Mn | M is an n-ary relational model } is
modally equivalent to the class
Mreg = {M | M is a consistent regular neighborhood model}

I The class T = {MT | M is a topological model } is modally
equivalent to the class
MS4 = {M | M is an S4 neighborhood model}
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End of lecture 2
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