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Plan for the Course

X Introduction, Motivation and Basic Epistemic Logic

X Other models of Knowledge, Knowledge in Groups
and Group Knowledge

X Adding Dynamics, Reasoning about Knowledge in
Games

X Logical Omniscience and Other Problems

Lecture 5: Reasoning about Knowledge in the Context of Social
Software
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Plan for the Course

Social Procedures

I Fair Division Algorithms

I Voting Procedures
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Fair Division

Adjusted Winner

Adjusted winner (AW ) is an algorithm for dividing n divisible
goods among two people (invented by Steven Brams and Alan
Taylor).

For more information see

I Fair Division: From cake-cutting to dispute resolution by
Brams and Taylor, 1998

I The Win-Win Solution by Brams and Taylor, 2000

I www.nyu.edu/projects/adjustedwinner
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Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 1. Both Ann and Bob divide 100 points among the three
goods.

Item Ann Bob

A 5 4
B 65 46
C 30 50

Total 100 100
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Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 2. The agent who assigns the most points receives the item.

Item Ann Bob

A 5 4
B 65 46
C 30 50

Total 100 100
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Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 2. The agent who assigns the most points receives the item.

Item Ann Bob

A 5 0
B 65 0
C 0 50

Total 70 50
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Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 3. Equitability adjustment:
Notice that 65/46 ≥ 5/4 ≥ 1 ≥ 30/50

Item Ann Bob

A 5 4
B 65 46
C 30 50

Total 100 100
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Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 3. Equitability adjustment:

Give A to Bob (the item whose ratio is closest to 1)

Item Ann Bob

A 5 0
B 65 0
C 0 50

Total 70 50
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Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 3. Equitability adjustment:

Give A to Bob (the item whose ratio is closest to 1)

Item Ann Bob

A 0 4
B 65 0
C 0 50

Total 65 54
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Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 3. Equitability adjustment:

Still not equal, so give (some of) B to Bob: 65p = 100− 46p.

Item Ann Bob

A 0 4
B 65 0
C 0 50

Total 65 54

Eric Pacuit and Rohit Parikh: Introduction to Formal Epistemology, Lecture 5 11



Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 3. Equitability adjustment:

yielding p = 100/111 = 0.9009

Item Ann Bob

A 0 4
B 65 0
C 0 50

Total 65 54
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Fair Division

Adjusted Winner: Example

Suppose Ann and Bob are dividing three goods: A,B, and C .

Step 3. Equitability adjustment:

yielding p = 100/111 = 0.9009

Item Ann Bob

A 0 4
B 58.559 4.559
C 0 50

Total 58.559 58.559
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Fair Division

Adjusted Winner: Formal Definition

Suppose that G1, . . . ,Gn is a fixed set of goods.

A valuation of these goods is a vector of natural numbers
〈a1, . . . , an〉 whose sum is 100.

Let α, α′, α′′, . . . denote possible valuations for Ann and
β, β′, β′′, . . . denote possible valuations for Bob.
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Fair Division

Adjusted Winner: Formal Definition

Suppose that G1, . . . ,Gn is a fixed set of goods.

An allocation is a vector of n real numbers where each component
is between 0 and 1 (inclusive). An allocation σ = 〈s1, . . . , sn〉 is
interpreted as follows.

For each i = 1, . . . , n, si is the proportion of Gi given to Ann.

Thus if there are three goods, then 〈1, 0.5, 0〉 means, “Give all of
item 1 and half of item 2 to Ann and all of item 3 and half of item
2 to Bob.”
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Fair Division

Fairness

I Proportional if both Ann and Bob receive at least 50% of
their valuation:

∑n
i=1 siai ≥ 50 and

∑n
i=1(1− si )bi ≥ 50

I Envy-Free if no party is willing to give up its allocation in
exchange for the other player’s allocation:∑n

i=1 s1ai ≥
∑n

i=1(1− si )ai and
∑n

i=1(1− si )bi ≥
∑n

i=1 sibi

I Equitable if both players receive the same total number of
points:

∑n
i=1 siai =

∑n
i=1(1− si )bi

I Efficient if there is no other allocation that is strictly better
for one party without being worse for another party: for each
allocation σ′ = 〈s ′1, . . . , s ′n〉 if

∑n
i=1 ai s

′
i >

∑n
i=1 ai si , then∑n

i=1(1− s ′i )bi <
∑n

i=1(1− si )bi . (Similarly for Bob)
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Fair Division

Easy Observations

I For two-party disputes, proportionality and envy-freeness are
equivalent.

I AW only produces equitable allocations (equitability is
essentially built in to the procedure).

I AW produces allocations σ that in which at most one good is
split.
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Fair Division

Adjusted Winner is Fair

Theorem (Brams and Taylor) AW produces allocations that are
efficient, equitable and envy-free (with respect to the announced
valuations)

S. Brams and A. Taylor. Fair Division. Cambridge University Press.
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Fair Division

Adjusted Winner: Strategizing

Item Ann Bob

Matisse 75 25
Picasso 25 75

Ann will get the Matisse and Bob will get the Picasso and each
gets 75 of his or her points.

Eric Pacuit and Rohit Parikh: Introduction to Formal Epistemology, Lecture 5 19



Fair Division

Adjusted Winner: Strategizing

Suppose Ann knows Bob’s preferences, but Bob does not know
Ann’s.

Item Ann Bob

M 75 25
P 25 75

Item Ann Bob

M 26 25
P 74 75

So Ann will get M plus a portion of P.

According to Ann’s announced allocation, she receives 50 points

According to Ann’s actual allocation, she receives
75 + 0.33 ∗ 25 = 83.33 points.
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Fair Division

Strategizing: A Theorem

Theorem (Brams and Taylor) Assume there are two goods, G1

and G2, all true and announced values are restricted to integers,
and suppose Bob’s announced valuation of G1 is x, where x ≥ 50.
Assume Ann’s true valuation of G1 is b. Then her optimal
announced valuation of G1 is:

x + 1 if b > x
x if b = x
x − 1 if b < x
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Fair Division

Strategizing: Example

Suppose both players know each other’s preferences but neither
knows that the other knows their own preference.

Item Ann Bob

M 75 25
P 25 75

Item Ann Bob

M 26 74
P 74 26

Each will get 74 of his or her announced points, but each one is
really getting only 25 of his or her true points.
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Fair Division

Strategizing: Example

Suppose both players know each other’s preferences. Moreover,
Ann knows that Bob knows her preference and Bob doesn’t know
that Ann knows.

Item Ann Bob

M 26 74
P 74 26

Item Ann Bob

M 73 74
P 27 26

What happens as the level of knowledge increases?
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Voting

� Fair Division

� Voting
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Voting

The Gibbard-Satterthwaite Theorem

Theorem There must be situations where it ‘profits’ a voter to
vote strategically, i.e., not according to his or her actual preference.

Under suitable conditions,

1. If P denotes the actual preference ordering of voter i ,

2. and ~Y denotes the profile consisting of the preference
orderings of all the other voters,

3. and S the aggregation rule,

Then the theorem says that there must exist P,Y ,P ′ such that
S(P ′,Y ) >P S(P,Y ).
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Voting

Two Issues

1. What does it mean to vote strategically?

• Voting as a game vs. voting as an act of communication

R. Parikh and E. Pacuit. Safe Votes, Sincere Votes and Strategizing. presented
at Stony Brook Game Theory Conference, 2005.

2. When is the Gibbard-Satterthwaite Theorem ‘effective’?

• The decision to strategize depends on the agents’ information
(eg. poll information).

E. Pacuit and R. Parikh. Knowledge Considerations in Strategic Voting. Work-
ing Paper.

S. Chopra, E. Pacuit and R. Parikh. Knowledge-theoretic Properties of Strate-
gic Voting. JELIA 2004.
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Voting

Voting Problem

Given a (finite) set X of candidates

and a (finite) set A of voters

each of whom have a preference over X

Devise a method F which aggregates the individual preferences to
produce a collective decision (typically a subset of X )
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Voting

Voting Procedures

I Type of vote, or ballot, that is recognized as admissible by
the procedure: let B(X ) be the set of admissible ballots for a
set X of candidates

I A method to count a vector of ballots (one ballot for each
voter) and select a winner (or winners)

Formally, A voting procedure for a set A of agents (with |A| = n)
and a set X of candidates is a pair

(B(X ),Ag)

I B(X ) is a set of ballots; and

I Ag : B(X )n → 2X (typically we are interested in the case
where |Ag(~b)| = 1).
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Voting

Examples

Plurality (Simple Majority)

I B(X ) = X

I Given ~b ∈ X n and x ∈ X , let #x(~b) =
∑

{i | bi=x} 1

Ag(~b) = {x |#x(~b) is maximal}

Approval Voting

I B(X ) = 2X

I Ag(~b) = {x |#x(~b) is maximal}
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Voting

Strategizing Functions

Fix the voters’ true preferences: P∗ = (P∗
1 , . . . ,P∗

n)

Given a vote profile ~v of actual votes, we ask whether voter i will
change its vote if given another chance to vote.
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Voting

Example I

The following example is due to [BF]

P∗
A = o1 > o3 > o2

P∗
B = o2 > o3 > o1

P∗
C = o3 > o1 > o2

Size Group I II

4 A o1 o1

3 B o2 o2

2 C o3 o1

If the current winner is o, then agent i will switch its vote to some
candidate o ′ provided

1. o ′ is one of the top two candidates as indicated by a poll

2. o ′ is preferred to the other top candidate
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Voting

Example II

P∗
A = (o1, o4, o2, o3)

P∗
B = (o2, o1, o3, o4)

P∗
C = (o3, o2, o4, o1)

P∗
D = (o4, o1, o2, o3)

P∗
E = (o3, o1, o2, o4)

Size Group I II III IV

40 A o1 o1 o4 o1

30 B o2 o2 o2 o2

15 C o3 o2 o2 o2

8 D o4 o4 o1 o4

7 E o3 o3 o1 o1

If the current winner is o, then agent i will switch its vote to some
candidate o ′ provided

1. i prefers o ′ to o, and

2. the current total for o ′ plus agent i ’s votes for o ′ is greater
than the current total for o.
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Voting

Example III

P∗
A = (o1, o2, o3)

P∗
B = (o2, o3, o1)

P∗
C = (o3, o1, o2)

Size Group I II III IV V VI VII · · ·
40 A o1 o1 o2 o2 o2 o1 o1 o1

30 B o2 o3 o3 o2 o2 o2 o3 o3

30 C o3 o3 o3 o3 o1 o1 o1 o3
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Voting

Example III
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Voting

Summary, so far

Agents, knowing an aggregation function, will strategize if they
know

a. enough about other agents’ preferences and

b. that the output of the aggregation function of a changed
preference will provide them with a more favorable result.
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Summary, so far
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Voting

Thank You!
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Finite and Infinite Dialogues

“But how does he know where and how
he is to look up the word ‘red’ and

what he is to do with the word ‘five’?”
Well, I assume he acts as I have described.
Explanations come to an end somewhere.

Ludwig Wittgenstein

Philosophical Investigations I.1

1



Two players Ann and Bob are told that the following
will happen. Some positive integer n will be chosen and
one of n, n + 1 will be written on Ann’s forehead, the
other on Bob’s. Each will be able to see the other’s
forehead, but not his/her own. After this is done, they
will be asked repeatedly, beginning with Ann, if they
know what their own number is.

Theorem 1: In those cases where Ann has the even
number, the reponse at the nth stage will be, “my num-
ber is n + 1”, and in the other cases, the response at
the (n + 1)st stage will be “my number is n + 1”. In
either case, it will be the person who sees the smaller
number, who will respond first.
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Definition 1: A Kripke model M for a (two person)
knowledge situation consists of a state space W and
two equivalence relations ≡1 and ≡2. Intuitively s ≡1 t
means that states s and t are indistinguishable to player
1 (Ann) and s ≡2 t means that they are indistinguish-
able to player 2 (Bob). We shall assume in this paper
that W is finite or countable.

In the example we are looking at, W = {(m, n)|m, nεN+

and |m− n| = 1}. If s, tεW and iε{1, 2}, then s ≡i t
iff (s)j = (t)j , where j = 3 − i, and (s)j is the j-the
component of s. Intuitively, s ≡i t means that when
the dialogue begins, player i cannot distinguish between
s and t, where Ann is player 1 and Bob is player 2.
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Definition 2: A subset X of W is i-closed if sεX and
s ≡i t imply that tεX . X is closed if it is both 1-closed
and 2-closed.

Definition 3: Given Kripke model M , X ⊆ W , and
sεX , then i knows X at s iff for all t, s ≡i t implies
that tεX . X is common knowledge at s iff there is a
closed set Y such that sεY ⊆ X .

Observation: If an announcement of a formula φ is
made, then the new Kripke structure is obtained by
deleting all states s ∈ W where φ is false.
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However, there is a serious defect in the ar-
gument in that both Ann and Bob’s reason-
ing depends heavily on what the other one is
thinking, including a consideration of what the
other does not know. Ann’s reasoning is justi-
fied if Bob thinks as she believes he does, and
Bob’s reasoning is justified if she thinks as he
believes she does. But there is no guarantee
that they do indeed think this way. How do we
justify what each thinks and what each does
and does not know?
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Definition 4: An IDS (interactive discovery system)
for M is a map
f : W ×N+ → {“no”} ∪W such that for each odd n,
f (s, n) (Ann’s response at stage n) depends only on the
≡1 equivalence class of s and on f (s, m) for m < n. For
each even n, f (s, n) depends only on the≡2 equivalence
class of s and on f (s, m) for m < n.
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Definition 5: The IDS f is sound if for all s, if
f (s, n) 6= “no”, then f (s, n) = s. We define if(s) =
µn(f (s, n) 6= “no”) and p(s) = 1 if if(s) is odd and 2
if if(s) is even. (Here µ stands for “least”. if(s) = ∞
if f (s, n) is always “no”. We may drop the subscript f
from if if it is clear from the context.)

Lemma 1: Let f be a sound IDS. Let s ≡i t, i(s) =
k < ∞ and p(s) = i. Then i(t) < k and p(t) 6= i.

Proof: At stage i(s), i has evidence distinguishing
between s and t. Since all previous utterances asso-
ciated with s were “no”, some previous utterance as-
sociated with t must have been nontrivial. Formally,
f (s, i(s)) = s 6= f (t, i(s)). But s ≡i t. Hence (∃m <
i(s))(f (s, m) 6= f (t,m)). Since m < i(s), f (s, m) =
“no” and so f (t,m) 6= “no”. Thus i(t) ≤ m < i(s).
Now, if p(t) = i, then, by a symmetric argument, we
could prove also that i(t) < i(s). But this is absurd.
Hence p(t) 6= i. 2
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Corollary: Suppose that p(s) = i and there is a chain
s = s1 ≡1 s2 ≡2 s3 ≡1 ...sm. Then i(s) ≥ m.

Corollary: Suppose that there is a chain s1 ≡1 s2 ≡2

s3 ≡1 ...sm ≡2 s1, with m > 1. Then i(si) = ∞ for all
i.

Proof: If, say, i(s1) = k < ∞, we would get i(s1) >
i(s2) > ... > i(sm) > i(s1), a contradiction. 2
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Remark 1: Theorem 1 is really a proof that the IDS
f is sound where f is defined by:
Ann’s strategy: If you see 2n+1, then say n “no”’s
and then, if Bob has not said his number, say “2n+2”.
If you see 2n, then say n “no”’s and if Bob has not said
his number, say “2n+1”.
Bob’s strategy: If you see 2n+1, then say n “no”’s
and then, if Ann has not said her number, say “2n+2”.
If you see 2n, then say n “no”’s and if Ann has not said
her number, say “2n+1”.

These strategies yield: i(2n + 2, 2n + 1) = 2n + 1,
i(2n, 2n + 1) = 2n, i(2n + 1, 2n + 2) = 2n + 2 and
i(2n + 1, 2n) = 2n + 1. In other words, the smaller
number if Ann’s number is even, and the bigger number
if it is odd. These strategies are optimal. E.g. we have

(6, 5) ≡1 (4, 5) ≡2 (4, 3) ≡1 (2, 3) ≡2 (2, 1)

and hence i(6, 5) has a minimum value of 5, the value
achieved by the strategy above.
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Theorem 2: The strategies implicit in theorem 1 and
described in remark 1 are optimal. I.e. if h is any other
sound IDS, then if(s) ≤ ih(s) for all s.

Proof: By cases. Suppose, for example, that Ann has
an even number and s = (2n, 2n− 1). if(s) = 2n− 1.
Suppose Bob is the one who first notices the state. Then
we have (2n, 2n− 1) ≡2 (2n, 2n + 1) ≡1 (2n + 2, 2n +
3)..., and by lemma 1, ih(s) could not be finite. So Ann
does first discover s. But then we have (2n, 2n− 1) ≡1

(2n − 2, 2n − 1) ≡2 (2n − 2, 2n − 3)... ≡2 (2, 1) and
so, by lemma 1, ih(s) ≥ 2n− 1. 2
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Infinite Dialogues

Instead of using the function f (n) = n + 1 we use a
somewhat more interesting function g defined as fol-
lows:

g(n) = 1 if n = 2k for some k > 0
g(n) = n + 2 if n is odd
g(n) = n−2 otherwise, i.e. if n is even, not a power of 2.
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(the dots represent numbers not shown, like 16,18,...,32,... etc.)
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Again the game proceeds by picking a positive integer
n, and writing one of n, g(n) on Ann’s forehead, the
other on Bob’s. Figure II shows states (a, b), where a
is written on Ann’s forehead and b on Bob’s and either
g(a) = b or g(b) = a.
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A
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. . . . . .(1,8)
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(14,12)Figure II
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Consider now what happens if the state is (1,3). Bob
realises after Ann’s first “I don’t know”, that his num-
ber is not 2, for otherwise Ann would have known that
her number is 1. After her second “I don’t know”, he
realises that his own number is not 4, for otherwise she
would have guessed her own number. More generally,
after 2k−1 + 1 stages, he realises that his number is not
2k.

Thus when ω stages pass, and Ann has still not guessed
her own number, Bob will realise that his number is not
any power of 2, and hence it must be 3. Thus, in the
case of the state (1,3), it is at stage ω+1 that one of the
two players realises his number. We can easily see now
that if the state is (5, 3), then Ann will realise her own
number at stage ω + 2, and so on through all ordinals
of the form ω + n.
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This construction is quite similar to that in
the Cantor-Bendixson theorem, [Mo], where a
closed set is gradually diminished by removing
isolated points until, at some countable ordi-
nal, either nothing is left or else a perfect set
is left. We now show that the parallel is ex-
act except that we are dealing simultaneously
with two topologies on the same space.
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The Cantor-Bendixson Theorem

Let X be a subset of the Euclidean space En and p ∈ X .
Then p is isolated if there is a neighbourhood U of p
which contains no points of X except p.

Theorem: Let X be a closed subset of En and X ′ be
the subset of X (its derivative) obtained by removing
all isolated points. X ′ may have new isolated points if
all their neighbours have been removed. Let X ′′ be the
derivative of X ′ and let Xω be the limit for all finite
stages. Continue this process, then after a countable
number of steps, there are no more isolated points. The
limit X∞ may be either empty, or else a perfect set (a
closed set which is dense in itself).

Fact: Every perfect set has cardinality that of the con-
tinuum.

Corollary: Every closed subset of En is either count-
able (or finite) or has cardinality that of the continuum.

In other words, the continuum hypothesis holds for closed
sets.

20



Definition 6: Let O be the set of countable ordinals,
M a Kripke structure. A TIDS (transfinite interactive
discovery system) for M is a pair of maps
p : O → {1, 2} and f : W × O → {“no”} ∪W such
that for each s, α, If j = p(α), then f (s, α) depends
only on the ≡j equivalence class of s and on f (s, β) for
β < α. Intuitively, p(α) is the person who responds at
stage α and f (s, α) is his response at stage α. Again,
“no” stands for “I don’t know”.

Definition 7: The TIDS f, p is sound if for all s, α,
if f (s, α) 6= “no”, then f (s, α) = s.
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We again define if(s) = µα(s(α) 6= “no”). Again,
if(s) = ∞ if f (s, α) is always “no”. We think of ∞ as
larger than all the ordinals, even the infinite ones. By
abuse of language, we will write p(s) for p(i(s)). This
makes our usage consistent with that of the previous
section.

First define:
W0 = W , Ti,0 = Ti, where the topologies Ti were de-
fined in definition 2.
Wα+1 = Wα− the i-isolated points of Wα, where i =
p(α).
Ti,α+1 = Ti,α

Tj,α+1 = Tj,α ⊕Wα+1 = {X ∩Wα+1|XεTj,α} for j 6= i
If λ is a limit ordinal, then
Wλ =

⋂
α<λ Wα

Ti,λ = {X ∩Wλ|∃α < λ, XεTi,α}.
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Note that the i-isolated points are not j-isolated for
j 6= i. Thus, in general, Wα+1 has to be added to j’s
topology. E.g. in figure II, the point (6,4) is an isolated
point for Bob but not for Ann. When that point is
removed, Ann gets more sets in her topology.

Now define the functions p, f by: p(α) = 1 if α is even
and 2 if α is odd. (We think of Ann as beginning with
the first ordinal, 0, and re-starting the dialogue at each
limit ordinal. Thus for instance, she responds at ω,
an even ordinal.) Let the function f be given by: at
stage α, if s is an i-isolated point of Wα and i=p(α)
then answer s. If the answer s has ever been given,
then answer s. Otherwise answer “no”. We show now
that this is a sound and optimal strategy for all Kripke
structures Mg arising from some function g from N+

to N+.
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Theorem 3: f is an optimal (among all strategies
which question Ann at all even ordinals and Bob at all
odd ordinals.) sound strategy and yields,
i(s) = if(s) = µα(sεWα −Wα+1).

Proof: f is evidently sound if it is a strategy. To see
that it is a strategy, suppose, if possible, that there
exist s, t, α such that s ≡i t where i = p(α) and
f (s, β) = f (t, β) for all β < α, but f (s, α) 6= f (t, α).
We may assume that α is the smallest ordinal for which
this happens, so that f (s, β) = f (t, β) = “no” for all
β < α. Obviously, one (and by soundness exactly one)
of f (s, α), f(t, α), say the first, is different from “no”.
Now s, tεWα (since all previous answers were “no”) but
s is an i-isolated point of Wα. This contradicts the fact
that s ≡i t.
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Suppose now that h is another sound strategy and,
there is some s such that ih(s) = α < if(s). I.e.,
h yields knowledge earlier in some case. Assume α is
the smallest ordinal for which h is faster than f . Let
i = p(α). Now we have h(s, β) = f (s, β) = “no” for
all β < α and f (s, α) = “no”, but h(s, α) = s. Since
f (s, α) = “no”, s is not an i-isolated point of Wα. Pick
t 6= s such that s ≡i t and tεWα. Then t is not an i-
isolated point of Wα, and hence of Wβ for any β < α.
Thus we have f (t, β) = “no” for all β < α and by
minimality of α, h(t, β) = “no” for all β < α. Since h
is a strategy, this yields h(t, α) = f (s, α) = s. Thus h
is not sound. 2
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Let us consider the problem now over a general Kripke
structure with a countable W . Let W∞ =

⋂
Wα : αεO.

Definition 8: < W, T1, T2 > is scattered if W∞ = ∅.

Theorem 4: < W, T1, T2 > is scattered iff there is a
sound strategy for M which always yields a non-trivial
answer.
Proof: If < W, T1, T2 > is scattered, then the CB
strategy always yields an answer. If it is not scattered,
then clearly the CB strategy cannot always yield an
answer. For there is a perfect core (W∞) which is never
removed. However, the CB strategy is optimal. Hence
no sound strategy can yield an answer in all cases. 2.
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Definition 9: g is well founded if there is no infinite
chain x1, x2, ... such that g(xn+1) = xn for all n. g is
finite-one iff for all n the set g−1(n) = {m|g(m) = n}
is finite.

Some of the folowing results will depend on the assump-
tion that g(n) = n or g(g(n)) = n never holds and we
make this a blanket assumption from now on. The
reason this condition is relevant is that if g(g(n)) = n
or g(n) = n, then the point (n, g(n)) might be isolated
even though g is not well founded.
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Theorem 5: (a) The space < W, T1, T2 > arising
from g is scattered iff g is well founded.
(b) If g is well founded and finite-one, then Wω = ∅,
i.e. every state is learned at some finite stage.
Proof: The first part has been proved already. To see
the second part, notice that König’s lemma applies to
the tree of g so that every state has only finitely many
states under it. 2

Corollary: g is well founded iff the dialogue between
Ann and Bob is guaranteed to terminate (with the CB
strategy).

We remark that for computable well founded functions
g, all ordinals less than Church-Kleene ω1 can arise as
ordinals of the corresponding trees.

28



The Probabilistic Case

We now show that if we are dealing with justified risk
rather than knowledge, then the situation of the last
section, which required infinite dialogues, improves dra-
matically.
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Suppose that the number n is chosen in accordance with
some probability distribution, say µ1(n) = 1

n(n+1). Thus

µ1(1) = 1/2, µ1(2) = 1/6, µ1(3) = 1/12 etc. This µ1

induces a probability measure µ on W if we assume
that the states (a, b) and (b, a) are equally likely.

Now the game is played as follows: each person risks
$1,000 by saying “I know my number, it is ...”. If (s)he
is right, (s)he receives one dollar. If (s)he is wrong, (s)he
loses $1,000. It is assumed that the parties are rational
and that rationality is common knowledge. Thus, for
example, if Ann did not guess her number yet, Bob
can assume that it was not yet profitable for her, and
conversely.

Then it will always make sense to take the risk after
a finite number of steps. I.e. after a finite number
of stages, the expected payoff will be positive for some
person.
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Theorem 6: If some function g is well founded, µ is
a probability distribution such that µ(s) is positive for
all s, B is some bet with positive payoff for a correct
guess, and negative payoff for an incorrect guess, and
it is common knowledge that the parties are rational,
then after a finite number of rounds, someone will take
the risk (and will be justified in taking the risk).

Proof: If not, then there is some x of lowest rank in the
tree of g such that the bet is never profitable for either
side. The person who sees x knows that his number
is either g(x) or else in X = {y|g(y) = x}. However,
since x has the lowest possible rank as above, all these
y, being of lower rank, are finitely bettable, i.e. it is
justified to bet on them at some finite stage. Hence, as
time passes, as elements of X which should have been
guessed are not guessed, the set X steadily approaches
the empty set and its probability approaches 0. Hence
after some finite stage, its probability will be as small
as needed. At this point it will make sense for Bob to
take the risk. This contradiction proves the theorem.
2
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Definition 10: Let M be a Kripke structure, µ be a
probability measure on W and ε be a real number > 0.
An interactive discovery system f for M, µ is ε-good if
for all s, there is an n such that f (s, n) = s, and if n is
the least such, then µ({s})/µ({t|f (t, n) = s}) > 1− ε.
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Theorem 7: Let M be a Kripke structure arising
from a well founded computable g. Suppose that µ1 is
a computable probability measure on N+ and δ > 0.
Then there is a δ-good, computable strategy f for M, µ.

Proof: Let d be an integer such that 1/d < δ. Define
strategies hA(s), hB(s) as follows:
hA(s): Let n = (s)2. Let k be the least integer greater
than 2d

µ1(n).

Let X = {m|m < r(k) and g(m) = n}.
Then hA(s) = 1 + max(hB(m) : mεX); hA(s) = 1 if
X is empty.
hB(s): Let n = (s)1. Let k be the least integer greater
than 2d

µ1(n)).

Let Y = {m|m < r(k) and g(m) = n}.
Then hB(s) = 1 + max(hA(m) : mεY ); hB(s) = 2 if
Y is empty.

We claim first that this gives us computable functions
hA, hB. The claim follows from the fact that hA(s)
depends only on (s)2 and on hB(m) for m such that
g(m) = (s)2. Similarly for hB. Since g is well founded,
this is a legitimate definition by reursion.

We now combine hA, hB into a strategy f . If n is odd,
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n ≥ hA(s) and all previous values f (s, p) have been
trivial, then f (s, n) = (g((s)2), (s)2). If some previous
value has been t then f (s, n) = t. Otherwise f (s, n) =
“no”. Similarly with n even, using hB instead of hA.

It is easiy seen that hA depends only on information
that Ann has, and hB depnds only on information that
Bob has. Hence f is a trategy.

We now show that this strategy is (1/d)-good, this will
imply that it is δ-good. Given s, let n be the least
integer such that g(s, n) 6= “no”. Assume without loss
of generality that n is odd.
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If X is empty, then the set {m|g(m) = (s)2} is con-
tained in the set {m|m > r(k)} and hence has mea-
sure less than µ1(g((s)2))/d. Thus the probability that
(s)1 = g((s)2) is larger than 1− 1/d.

If X is not empty, then n = hA(s). Suppose (s)1 were
such that g((s)1) = (s)2, then if (s)1εX , we would al-
ready have a non-trivial value earlier. Hence, the prob-
ability that g((s)1) = (s)2, given that there have been
only trivial answers so far, is less than µ1(g((s)2) ×
(1/d). Hence the probability that the state is ((g(s)2), (s)2)
exceeds 1− (1/d). 2

Theorem 8: g is well founded iff for all µ, δ, there
exist δ-good strategies.

35


	Plan for the Course
	Fair Division
	Voting

