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Plan for the Course

X Introduction, Motivation and Basic Epistemic Logic

Lecture 2: Other models of Knowledge, Knowledge in Groups
and Group Knowledge

Lecture 3: Reasoning about Knowledge and .......

Lecture 4: Logical Omniscience and Other Problems

Lecture 5: Reasoning about Knowledge in the Context of Social
Software

Eric Pacuit and Rohit Parikh: Introduction to Formal Epistemology, Lecture 2a 2



Review from Yesterday

Epistemic Logic

The Language: ϕ := p | ¬ϕ | ϕ ∧ ψ | Kϕ

Kripke Models: M = 〈W ,R,V 〉 with R an equivalence relation

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V (p) (with p ∈ At)

I M,w |= ¬ϕ if M,w 6|= ϕ

I M,w |= ϕ ∧ ψ if M,w |= ϕ and M,w |= ψ

I M,w |= Kϕ if for each v ∈ W , if wRv , then M, v |= ϕ
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Review from Yesterday

Epistemic Logic

The Language: ϕ := p | ¬ϕ | ϕ ∧ ψ | Kiϕ with i ∈ A

Kripke Models: M = 〈W , {Ri}i∈A,V 〉 with Ri and equivalence
relation.

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V (p) (with p ∈ At)

I M,w |= ¬ϕ if M,w 6|= ϕ

I M,w |= ϕ ∧ ψ if M,w |= ϕ and M,w |= ψ

I M,w |= Kiϕ if for each v ∈ W , if wRiv , then M, v |= ϕ
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Review from Yesterday

Results

Modal Formula Property Philosophical Assumption

K (ϕ→ ψ) → (Kϕ→ Kψ) — Logical Omniscience
Kϕ→ ϕ Reflexive Truth

Kϕ→ KKϕ Transitive Positive Introspection
¬Kϕ→ K¬Kϕ Euclidean Negative Introspection

¬K⊥ Serial Consistency
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Review from Yesterday

Results
The logic S5 contains the following axioms and rules:

Pc Axiomatization of Propositional Calculus
K K (ϕ→ ψ) → (Kϕ→ Kψ)
T Kϕ→ ϕ
4 Kϕ→ KKϕ
5 ¬Kϕ→ K¬Kϕ

MP
ϕ ϕ→ ψ

ψ

Nec
ϕ

Kψ

Theorem
S5 is sound and strongly complete with respect to the class of
Kripke frames with equivalence relations.
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Other Models

� Other Models

� Aumann Structures

� Group Knowledge
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Other Models

R. Aumann. Interactive Epistemology I & II. 1999.
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Aumann Structures

I Let W be a set of worlds, or states.
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Aumann Structures

I Let W be a set of worlds, or states.

I Let S be the set of all states of nature: A state of nature is a
complete description of the exogenous parameters (i.e. facts
about the physical world) that do not depend on the agents’
uncertainties.
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Aumann Structures

I Let W be a set of worlds, or states.

I Let S be the set of all states of nature.

I A set E ⊆ W , called an event, is true at state w if w ∈ E .
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Aumann Structures

Definition
Aumann Model An Aumann model based on S is a triple
〈W ,Π, σ〉, where W is a nonempty set, Π is a partition over W
and σ : W → S .

Definition
Knowledge Function Let M = 〈W ,Π, σ〉 be an Aumann model.
The knowledge function, K : ℘(W ) → ℘(W ), based on M is
defined as follows:

K(E ) = {w | Π(w) ⊆ E}
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Aumann Structures

Lemma
Let M = 〈W ,Π, σ〉 be a Aumann model and K the knowledge
function based on M. For each E ,F ⊆ W

E ⊆ F ⇒ K(E ) ⊆ K(F ) Monotonicity
K(E ∩ F ) = K(E ) ∩ K(F ) Closure Under Intersection
K(E ) ⊆ E Truth
K(E ) ⊆ K(K(E )) Positive introspection

K(E ) ⊆ K(K(E )) Negative introspection
K(∅) = ∅ Consistency

where E means the set-theoretic complement of E (relative to W).
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Aumann Structures

We can give analogous correspondence, completeness, etc. proofs.
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Aumann Structures

Bayesian Structures

I Let W be a set of worlds and ∆(W ) be the set of probability
distributions over W .

I We are interested in functions p : W → ∆(W ).

I The basic intuition is that for each state w ∈ W ,
p(w) ∈ ∆(W ) is a probability function over W .

I So, p(w)(v) is the probability the agent assigns to state v in
state w . To ease notation we write pw for p(w).
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Aumann Structures

Definition
The pair 〈W , p〉 is called a Bayesian frame, where W 6= ∅ is any
set, and p : W → ∆(W ) is a function such that

if pw (v) > 0 then pw = pv

Given a Bayesian frame F = 〈W , p〉 and a set of states S , an
Bayesian model based on S is a triple 〈W , p, σ〉, where
σ : W → S .

Definition
For each r ∈ [0, 1] define B r : 2W → 2W as follows

B r (E ) = {w | pw (E ) ≥ r}
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Aumann Structures

Observation: We can define a possibility model from a Bayesian
model as follows. Let 〈W , p, σ〉 be a Bayesian model on a state
space S . We define a possibility model 〈W ,P, σ〉 base on S as
follows: define P : W → 2W by

P(w) = {v | πw (v) > 0}

It is easy to see that P is serial, transitive and Euclidean.
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Group Knowledge

� Other Models

� Aumann Structures

� Group Knowledge
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Group Knowledge

Common Knowledge and Coordination

Suppose there are two friends Ann and Bob are on a bus separated
by a crowd. Before the bus comes to the next stop a mutual friend
from outside the bus yells “get off at the next stop to get a
drink?”.

Say Ann is standing near the front door and Bob near the back
door. When the bus comes to a stop, will they get off?

D. Lewis. Convention. 1969.

M. Chwe. Rational Ritual. 2001.
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Group Knowledge

Three Views of Common Knowledge

1. γ := i knows that ϕ, j knows that ϕ, i knows that j knows
that ϕ, j knows that i knows that ϕ, i knows that j knows
that i knows that ϕ, . . .
D. Lewis. Convention, A Philosophical Study. 1969.

2. γ := i and j know that (ϕ and γ)
G. Harman. Review of Linguistic Behavior. Language (1977).

3. There is a shared situation s such that

• s entails ϕ
• s entails i knows ϕ
• s entails j knows ϕ

H. Clark and C. Marshall. Definite Reference and Mutual Knowledge. 1981.

J. Barwise. Three views of Common Knowledge. TARK (1987).
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Group Knowledge

Common Knowledge: Iterated View

Recall Ki : ℘(W ) → ℘(W ) is i ’s knowledge function.

Define Km : ℘(W ) → ℘(W ) for m ≥ 1 by

I K 1E :=
⋂

i∈A KiE

I Km+1E := K 1(Km(E ))

K 1E means everyone knows E
K 2E means everyone knows that everyone knows E

Define K∞ : ℘(W ) → ℘(W )

K∞E := K 1E ∩ K 2E ∩ · · · ∩ KmE ∩ · · ·
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Group Knowledge

Fact Prove that for all i ∈ A and E ⊆ W , KiK
∞(E ) = K∞(E ).
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Group Knowledge

Fact Prove that for all i ∈ A and E ⊆ W , KiK
∞(E ) = K∞(E ).

Suppose you are told “Ann and Bob are going together,”’
and respond “sure, that’s common knowledge.” What
you mean is not only that everyone knows this, but also
that the announcement is pointless, occasions no
surprise, reveals nothing new; in effect, that the situation
after the announcement does not differ from that before.
...the event “Ann and Bob are going together” — call it
E — is common knowledge if and only if some event —
call it F — happened that entails E and also entails all
players’ knowing F (like all players met Ann and Bob at
an intimate party). (Aumann, pg. 271, footnote 8)

Eric Pacuit and Rohit Parikh: Introduction to Formal Epistemology, Lecture 2a 17



Group Knowledge

Definition
Self-Evident Event An event F is self-evident if Ki (F ) = F for all
i ∈ A.

Definition
Knowledge Field Let 〈W , {Πi}i∈A, σ〉 be a multi-agent Aumann
model. For each i ∈ A, the knowledge field of i , denoted Ki , is
the family of all unions of cells in Πi .

Lemma
An event E is commonly known iff some self-evident event that
entails E obtains. Formally, K∞(E ) is the largest event in ∩i∈AKi

that is included in E .
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Group Knowledge

Common Knowledge in Epistemic Logic

Definition
The operator “everyone knows ϕ”, denoted Eϕ, is defined as
follows

Eϕ :=
∧
i∈A

Kiϕ
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Group Knowledge

Common Knowledge in Epistemic Logic

Definition
The operator “everyone knows ϕ”, denoted Eϕ, is defined as
follows

Eϕ :=
∧
i∈A

Kiϕ

Definition
The multi-agent epistemic language with common knowledge is
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ

where p ∈ At and i ∈ A.

Eric Pacuit and Rohit Parikh: Introduction to Formal Epistemology, Lecture 2a 18



Group Knowledge

Common Knowledge in Epistemic Logic

Definition
The truth of Cϕ is:

M,w |= Cϕ iff for all v ∈ W , if wR∗v then M, v |= ϕ

where R∗ := (
⋃

i∈A Ri )
∗ is the reflexive transitive closure of the

union of the Ri ’s.
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Group Knowledge

Common Knowledge in Epistemic Logic

Definition
The truth of Cϕ is:

M,w |= Cϕ iff for all v ∈ W , if wR∗v then M, v |= ϕ

where R∗ := (
⋃

i∈A Ri )
∗ is the reflexive transitive closure of the

union of the Ri ’s.

M,w |= Cϕ iff every finite path starting at w ends with a state
satisfying ϕ.
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Group Knowledge

Example

P

s

¬P

t

B

A, BA, B

P means “The talk is at 2PM”.
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Group Knowledge

Another Example

Two players Ann and Bob are told that the following will happen.
Some positive integer n will be chosen and one of n, n + 1 will be
written on Ann’s forehead, the other on Bob’s. Each will be able
to see the other’s forehead, but not his/her own.

Suppose the number are (2,3).

Do the agents know there numbers are less than 1000?

Is it common knowledge that their numbers are less than 1000?
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Group Knowledge

Logics with Common Knowledge

The following axiom and rule need to be added to S5 to deal with
the common knowledge operator:

I C (ϕ→ ψ) → (Cϕ→ Cψ)

I Cϕ→ (ϕ ∧ ECϕ)

I C (ϕ→ Eϕ) → (ϕ→ Cϕ)

Theorem
S5C is sound and weakly complete with respect to the class of all
Kripke frames where the relations are equivalence relations.
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Group Knowledge

Concluding Remark

I In Relational Models (including Aumann Structures), the first
two views of Common Knowledge are mathematically
equivalent and it is not clear how to represent the third view.

I They can be separated using alternative semantics.
J. van Benthem and D. Sarenac. The Geometry of Knowledge. 2005.

J. Barwise. Three Views of Common Knowledge. TARK, 1987.

I There are other notions of “group knowledge”: distributed
knowledge

I In many social situations, other levels of knowledge are of
interest...
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Group Knowledge

Time for a beak.
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A travelling salesman found himself spending the
night at home with his wife when one of his trips
was accidentally cancelled. The two of them were
sound asleep, when in the middle of the night there
was a loud knock at the front door. The wife woke
up with a start and cried out, “Oh my God! It’s my
husband!” Whereupon the husband leapt out of bed,
ran across the room and jumped out the window.

Schank and Abelson, 1977, p. 59.

1



Wimmer and Perner on Beliefs about beliefs

Mother returns from her shopping trip. She
bought chocolate for a cake. Maxi may help
her put away the things. He asks her, “Where
should I put the chocolate?” “In the blue cup-
board,” says the mother.

Later, with Maxi gone out to play, the mother trans-
fers the chocolate from the blue cupboard to the green
cupboard. Maxi then comes back from the playground,
hungry, and he wants to get some chocolate.

In Wimmer and Perner’s experiment, little children who
were told the Maxi story were then asked the belief
question, “Where will Maxi look for the chocolate?”

2



Children at the age of three or less invariably got the
answer wrong and assumed that Maxi would look for
the chocolate in the green cupboard where they knew
it was. Even children aged four or five had only a one-
third chance of correctly answering this question or an
analgous question involving Maxi and his brother (who
also wants the chocolate and whom Maxi wants to de-
ceive).

Children aged six or more were by contrast quite suc-
cessful in realizing that Maxi would think the chocolate
would be in the blue cupboard – where he had put it
and that if he wanted to deceive his brother, he would
lead him towards the green cupboard.

3



The Muddy Children Puzzle

In this by now well-known puzzle, a number of children
are playing in the mud and some of them get their fore-
heads dirty. At this the father comes on the scene and
announces, “at least one of you has got her forehead
dirty.”

Scenario 1: Suppose there is only one child, say Amy,
who is dirty. Then she will realize that her own forehead
must be dirty since she can see that the others are clean.

Scenario 2: Suppose now that there are two dirty chil-
dren, Sarah and Amy, who are asked in turn, “Do you
know if your forehead is dirty?” Now when Sarah is
asked, she can see Amy’s dirty forehead and she replies,
“I don’t know.” However, when Amy is asked, she is
able to reason, “If my forehead were clean, Sarah would
have known that hers must be dirty since all the others
are clean. But Sarah did not know. So my forehead
must be dirty.”
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This reasoning on Amy’s part requires a representation
by Amy of Sarah’s state of mind, and clearly Amy must
be at least six for this to work. However, Sarah herself
must have some reasoning ability and Amy must know
that she has such abilities. It is not enough for Amy
to know Sarah’s view of reality, she must also represent
Sarah’s logical abilities in her own mind.

In particular, suppose that there are three dirty children
– Jennifer, Sarah, and Amy – who are asked in turn
whether they know if they are dirty, and with Amy
being asked last. If Sarah is only three, Amy would not
be justified in concluding from Sarah’s “I don’t know”
that in that case, Amy herself must be dirty. Amy
would need to know that if Amy were clean, Sarah
would have carried out a representation in her own mind
of Jennifer’s state of mind and concluded from Jennifer’s
“I don’t know” that Sarah must herself be dirty. But if
Sarah is only three, Amy cannot rely on such reasoning
on Sarah’s part.
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Man or Elephant?

This example comes from the Mahabharata, one of the
Indian epics and at 100,000 verses, believed to be the
longest single work in the ancient world. It describes
the political struggle between two sets of cousins, the
Pandavas, and the Kauravas. In a crucial battle be-
tween the two sets of cousins, Krishna is an adviser
to the Pandavas, but out of a sense of fair play he
gives his army to the Kauravas. At a crucial juncture
Drona, a powerful warrior on the Kaurava side and
also the teacher of both the Pandavas and Kauravas,
turns out to be invincible in battle and the Pandavas
are hard pressed.

However, the wily Krishna thinks up a strategem.
Drona’s only son is called Ashvatthama and so is an
elephant owned by the Pandavas. Krishna suggests
that the Pandavas kill the elephant Ashvatthama and
then announce that the man Ashvatthama has been
killed.
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After a great deal of hesitation and soul searching, self-
interest prevails, the Pandavas do kill the elephant,
and announce to Drona that Ashvatthama is dead.
Drona is a little suspicious, but knows that one of the
Pandava brothers, Yudhisthira never lies. He asks
Yudhisthira, who confirms that Ashvatthama is dead,
muttering in an aside, “either man or elephant.” Not
knowing about the elephant, Drona assumes it is his
son who is dead, lays down his weapons, and is killed
by a warrior on the Pandava side.
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We now offer a game-knowledge theoretic analysis of
this event.

Let Drona’s two options be f for ‘fight’ and n for not
fight. Before the announcement his preferences were
f > n and given his prowess, any warrior who faced
him faced death.

But after the announcement that Ashwatthama was
dead, his preferences change to n > f , and he can be
attacked with impunity.

Ahswatthama of course was not dead and took terrible
revenge on the Pandavas including the killing of some
unborn Pandava children. For this he was punished
by being condemned to live forever, and to wander the
earth as a pariah.
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The Pedestrian and the Motorist

Deception consists of inducing a second-order false be-
lief.
Let S be the situation where a pedestrian is crossing
the street and a car is coming.
Let S ′ be the same situation without the car.

Motorist choices

Pedestrian
choices

g

n

G N

(-100,-10) (1,0)

(0,1) (0,0)

Figure I

There are two Nash equilibria: at (g,N) and at (n, G).
However, the penalty for the pedestrian (injury or loss
of life) to depart from (n, G) is much greater than the
penalty for the motorist (fine or loss of license) to depart
from (g,N). Thus the equilibrium (g,N) is less stable
than (n, G), and this fact creates the possibility for the
motorist to ‘bully’ the pedestrian.
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However, if the pedestrian is unaware of the existence of
the car, then the picture is much simpler and his payoffs
are 1 for g and 0 for n. g dominates n, and once this
choice is made by the pedestrian, it is dominant for
the motorist to choose N . This is why the pedestrian
tries to achieve the state of knowledge represented by
the formulas Kp(C),¬Km(Kp(C)) indicating that the
pedestrian knows the car is there but the motorist does
not know that the pedestrian knows. The pedestrian
chooses the action g, and knowing that the pedestrian
will do this, the motorist must choose N . However, if
the motorist has a horn, he can change the knowledge
situation. The existence of the car becomes common
knowledge and thus the possibility for the motorist to
bully the pedestrian arises again.
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The Problem of the Two Generals
(Halpern and Moses)

In this problem there are two generals A, B who are
stationed on opposing hilltops and who wish to attack
an enemy E in the valley below. General A sends a
messenger to general B suggesting that the two should
attack together at dawn. However, there is a possibil-
ity that the message might not reach B. Perhaps the
messenger would be captured or killed by E, and gen-
eral A attacking by himself would be badly defeated.
So general A asks for an acknowledgement from B that
his message let us attack at dawn has been received.

However, general B has the same problem. He does
not wish to attack alone and so he agrees to the attack,
but asks for an acknowledgement in turn. Clearly this
process of saying attack at dawn, please acknowledge
can never end. What is needed, Halpern and Moses
argue, is common knowledge of the intended attack and
no finite number of messages back and forth will achieve
it.
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However, there is a small twist in this problem to which
we now turn.

Let a stand for the event that general A attacks alone.
Let b stand for the event that general B attacks alone.
Let t stand for the event that they attack together.
And finally let n stand for the event that neither at-
tacks.

The analysis which Halpern and Moses provide tacitly
assumes that the priorities are: t > n > b > a for
general A, and t > n > a > b for general B. “If only
one general is going to attack, let it be the other guy,”
is tacitly assumed.

Suppose, however, that t > b > n > a for both gener-
als. Then general A can issue the message “Let us plan
to attack at dawn, please acknowledge, but I will not
acknowledge your acknowledgement.”

In such a case, A is guaranteed not to attack alone,
and there may well be a good chance of t, provided
only that the probability of a message getting through
is high enough.
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As our final example we consider the ballot box whose
function is to create certain specific states of knowl-
edge. Suppose that five people 1, 2, 3, 4, 5 are debating
whether to have lettuce or cucumbers for salad. They
cast their votes into a ballot box and the final count
reveals that lettuce has won by 3 votes to 2.

Let Ci : i ≤ 5 mean that i voted for cucumber, and
similarly for lettuce. Then the propositional formula
which expresses that exactly two voted for lettuce and
three for cucumbers is common knowledge. This is a
formula with 10 disjunctions, a typical one being (L1 ∧
L2 ∧ C3 ∧ L4 ∧ C5). Also what is common knowledge
is (∀i,∀j)(i 6= j → ¬Ki(Cj)) as well as (∀i,∀j)(i 6=
j → ¬Ki(Lj)). I.e. it is common knowledge that no
one knows anyone else’s vote. I am sure the reader can
see the game theoretic reasons for these two knowledge
facts. Everyone must know the results of the election,
and the lettuce party must not be in a position to take
revenge on the two cucumbers.
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Common Knowledge and Consensus

In 1976 Aumann proved the following remarkable result.
Suppose two agents start out with a common partition
of the state space W but then receive different infor-
mation. Let A be an event, and let p, q be the new
probabilities of A for the two agents.

Theorem 1: If p and q are common knowledge,
then p = q.

Aumann’s result used the sure thing principle. Let
E, F be disjoint events and suppose that p(A|E) =
p(A|F ) = x. Then p(A|E ∪ F ) = x.

Geanakoplos and Polemarchakis showed that if p and q
were not equal, but the agents exchanged their values of
p and q, updating properly, then their values of p and
q updated would become equal after a finite number of
steps.

Corollary (to Aumann): It is not possible for two
agents Ann and Bob to be such that Ann thinks some
stock is going down and Bob thinks that the stock is
going up, so that Ann is selling the stock to Bob.
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Definition 1: Let f be a function defined on subsets
of W into the reals. f is convex if
a) f satisfies the sure thing principle and
b) if f (E) < f (F ) then f (E) < f (E ∪ F ) < f (F ).

Theorem 2: (RP and Krasucki) If n agents ex-
change values of such a convex f in pairwise comm-
munications so that no agent is left out of the chain of
communication, then eventually their estimates of value
of f will become equal.
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Levels of Knowledge

Given a group N = {1, ..., n} of agents (whether people
or processes), what are the properties of their state of
knowledge relative to some fact A?

Definition 2: Assume given m propositional vari-
ables P1, ..., Pm. Let L0 = {P1, ..., Pm} and let Lg be
all boolean combinations of the Pi. If the Pi are basic
ground facts, then Lg represents all ground (knowledge-
free) facts. Given a group N = {1, ..., n} of agents, we
define the full knowledge language L as follows:
(i) L0 ⊆ L
(ii) If A, B ∈ L then so are ¬A, A ∨B.
(iii) If A ∈ L then for all i ≤ n, Ki(A) ∈ L.

To consider common knowledge as well we extend L to
Lc by adding the conditions
(iv) L ⊆ Lc

(v) If A ∈ Lc and U ⊆ N then CU(A) ∈ Lc.
For convenience we shall identify Ki with C{i}.
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Definition 3: A Kripke structure M for L consists
of a nonempty set W of states, a map π from W × L0

into {1, 0} with 1 standing for true and 0 for false,
and finally an equivalence relation Ri over W for each
i ≤ m.

Definition 4: Given a Kripke structure M for L, a
state s ∈ W and a formula A ∈ Lc we defineM, s |= A
as follows by induction on the complexity of A. First,
for each U ⊆ N , we define the relation RU to be the
transitive closure of

⋃
Ri : i ∈ U . Then we have:

(i) If A is atomic then M, s |= A iff π(s, A) = 1
(ii) If A = ¬B then M, s |= A iff M, s 6|= B
(iii) If A = B ∨ C then M, s |= A iff M, s |= B or
M, s |= C
(iv) If A = Ca(B) where a is either some i or else some
U , then M, s |= A iff
(∀t)((s, t) ∈ Ra →M, t |= B)
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Theorem 3: Let ΣC be the alphabet whose symbols
are {CU}U⊆N

For all x, y in Σ∗C, and all formulae A, for all M, s,
V ⊆ U ⊆ N ,
M, s |= xCUCV yA iff M, s |= xCV CUyA iff M, s |=
xCUyA.

In other words, common knowledge by the larger group
U absorbs common knowledge by the smaller one.
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Corollary 1: Let ΣK be the alphabet whose symbols
are {K1, . . . , Kn}. For all a = Ki in ΣK, and for all x,
y, in Σ∗K, and all formulae A,

|= xayA ↔ xaayA

and hence for all M, s, M, s |= xayA iff M, s |=
xaayA, i.e., repeated occurrences of a are without effect
and if xay ∈ LK(A, s) then ∀n xany ∈ LK(A, s).

In other words, it is common knowledge that a knowing
some B is the same as a knowing that a knows B.

Definition 5: Given a formula A and M, s the level
of A at s, L(A, s) is the set of x in Σ∗C such thatM, s |=
xA, and x contains no substrings CUCV , CV CU for any
V ⊆ U ⊆ N .

Strings x such that x contains no substrings CUCV ,
CV CU for any V ⊆ U ⊆ N will be called simple.
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Embeddability

Definition 6: Given two strings x, y ∈ Σ∗K, we say
that x is embeddable in y (x ≤ y), if all the symbols
of x occur in y, in the same order, but not necessarily
consecutively. Formally:
1) x ≤ x, ε ≤ x for all x
2) x ≤ y if there exist x′, x′′, y′, y′′, such that x = x′x′′,
y = y′y′′, and x′ ≤ y′, x′′ ≤ y′′.
and ≤ is the smallest relation satisfying (1) and (2).

Thus the string aba is embeddable in itself, in aaba and
in abca, but not in aabb.

Fact 1: Embeddability is a well-partial order, i.e. it
is not only well-founded, but every linear order that ex-
tends it is a well-order. Equivalently, it is well-founded
and every set of mutually incomparable elements is fi-
nite.

Note for instance that an infinite set of incomparable
elements {a1, ..., an, ...} is well-founded – nothing is be-
low anything else. However, it is not a WPO, for we can
clearly set a1 > a2 > a3.... which gives an extension of
the original, flat ordering.

20



Fact 2: Embeddability can be tested in linear time,
e.g., by a nondeterministic finite automaton with two
input tapes.

Fact 1 was proved first by Graham Higman [Hi]. See
[JP] for a discussion. Fact 2 is straightforward.

We also need a stronger relation defined on Σ∗C, which
we call C–embeddability.

Definition 7: Given two strings x, y ∈ Σ∗C, we say
that x is C–embeddable in y (x � y), if
1) If V ⊆ U then CV � CU

2) x � y if there exist x′, x′′, y′, y′′, (y′, y′′ 6= ε), such
that x = x′x′′, y = y′y′′, and x′ � y′, x′′ � y′′.
and � is the smallest relation satisfying (1) and (2).

Fact 3: For any x, y ∈ Σ∗K, x ≤ y iff x � y.

Fact 4: C-embeddability is a well-partial order.

Definition 8: R ⊆ S is downward closed iff x ∈ R
implies ∀y � x, y ∈ R.

21



The Main Results on Levels of Knowledge

Theorem 4: Let ΣC be the alphabet whose symbols
are {CU}U⊆N . Then for all strings x, y in Σ∗C, if x � y
then for all M, s, if M, s |= yA then M, s |= xA.

Corollary 1: Every level of knowledge is a down-
ward closed set with respect to �. 2

Theorem 5: There are only countably many levels
of knowledge and in fact all of them are regular subsets
of Σ∗ (where Σ is either ΣK or ΣC).

Fact 5: Eric Pacuit and ourselves have shown that in
contrast with knowledge there are uncountably many
possible levels of rational belief. This is curious, as truth
is the only condition which (formally) separates knowl-
edge from rational belief.
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Corollary 1: The membership problem for a level
of knowledge can be solved in linear time.

Now we consider what finite downward closed sets of
strings can look like.

Theorem 6: If L is a non-empty finite subset of
Σ∗K, then L is downward closed iff for some k,

L =

k⋃
i=1

dc({xi})

where xi ∈ Σ∗K.

Proof: Consider the set M of maximal elements of
L. Then because the order is a WPO, the set M must
be finite. Moreover, every element of L must lie below
some maximal element. Hence if M = {x1, ..., xk} then

we get L =
⋃k

i=1 dc({xi}). 2

This theorem reiterates the fact that the finite levels
are characterized by their maximal elements (x1, ..., xk

are maximal). The characterization of infinite levels of
knowledge is more complex. The details are in [PK].
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We have shown that every level of knowledge is a regular
set of strings satisfying certain conditions. But do all
such sets actually arise as levels of knowledge? We now
give a simple argument to show that they do in fact.
The following result is proved jointly with Eric Pacuit.

Theorem 7: Let L be a downward closed set of strings
relative to �. Then there is a finite Kripke model M
and state s such that for all strings x in {K1, ..., Kn}∗,
M, s |= xp iff x ∈ L, where p is a propositional variable.
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Applications to Games

Game G: This is really a pair of games, but having
warned the reader we will just call it a game. In this
game each player chooses a number between 1 and 10. If
the two numbers are more than 1 apart, the payoff is 0 in
both M, N . If the numbers chosen are at most 1 apart,
then in N the payoff to each player is the maximum of
the two numbers, say a, b. However, if they are at most
1 apart, then the payoff in M will be 10 - min(a, b).

So in N it pays to pick the higher numbers, and in M
it pays to pick the lower numbers. Thus for instance
the numbers (2,6) will yield 0 payoff in both matrices,
whereas (2,3) will yield a payoff of 3 in N and of 8 in
M .

We assume that N is the default game but that the
game could be M . p is the proposition that the actual
game is M .
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Now if C does not know p, C – assuming that the matrix
is N – will play 10. In N , this would give the highest
possible payoff of 10, provided that R plays 9 or 10.
Now if R knows p and that C does not know p, R will
know that C will play 10 and R herself will play 9. Thus
the payoff to each will be 10 – 9 = 1.

Suppose now that C knows that R knows p, but R does
not know this. Then C will know that R will play 9 and
C will play 8, with the payoff to both being 2. R will
be surprised, but pleasantly.

As the level of knowledge of p goes up, so will the pay-
offs, until a maximum of 10 is reached with one of the
players playing 0 and the other playing 1. Even though
the payoffs are co-ordinated, higher levels of knowledge
bring greater benefits, until level 10 is reached and after
that, even common knowledge will be no better.

In any case, it is evident that in finite strategy games
with co-ordinated payoffs, the higher levels of knowledge
always bring better payoffs. This will be the case in two
player games of co-ordination, provided only that one
player knows everything which the other does.
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The situation is different if there are more than two
players or if there are infinitely many strategies for both
players. With more than two players a problem can
arise if players have incomparable knowledge. Thus if
there are three players A, B, C, and A and B have dif-
ferent notions of what C will play, then even though
the three have common interests, A and B might make
choices which will make the outcome worse for all three.
But if there is a hierarchy so that player A knows every-
thing which B knows, and player B knows everything
which C knows, and the games are co-ordinated so that
a benefit to one is a benefit to the others, then we will
still have the result that higher, finite levels are bene-
ficial.
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Game G2: In this game both players play some nat-
ural number. The payoff is 0 in both M, N if the dif-
ference between the two numbers is more than 1. In N ,
if either number exceeds 10, the payoff is 0, but if both
numbers are ≤ 10 and no more than 1 apart, the pay-
off is the maximum of the two numbers. Matrix M is
similar to matrix N in that higher numbers are better,
but there is no punishment for numbers > 10. The
payoff is the maximum, period, provided only that the
numbers are no more than 1 apart.

Suppose now that p is true, R knows it but C does not.
Then C will play 10 and knowing this, R will play 11.
The payoff will be 11 for both.

If Kr(p), Kc(Kr(p)), Kc(¬Kr(Kc(p))), then C will know
that R will play 11 and C himself will play 12, thus get-
ting a payoff of 12 for both. As the level of knowledge
rises, so will the payoff. But now there is a paradox! If
p is common knowledge, the players will have no idea
how to play! So common knowledge is not necessarily
better than a high finite level of knowledge.
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Non-coordinated games: Suppose now that we are
dealing with games where the payoffs are not positively
correlated. Perhaps one or both matrices are zero sum,
although as we noticed, it is really the matrix M which
counts. Matrix N is only used to establish that 1 is the
default strategy for C.

Now suppose we have some level of knowledge Kr(p), Kc(Kr(p)), ....
rising to some finite level. Then we may have the situ-
ation that the default play for C (in N) is 1, the best
response to that (in M , the actual game) is 2, the best
response to that is 3 and so on, until we reach the play
corresponding to the actual level of knowledge, perhaps
(r(2n, 2n + 1), c(2n, 2n + 1)) for some n.

Now if the matrices are finite, then there is bound to
be a cycle. Perhaps such a cycle will reach a Nash
equilibrium and then stabilize. Perhaps it will just go
on and on, with immediately succeeding levels of knowl-
edge giving different payoffs, with the player who knows
a bit more having an advantage.
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Further Work and Open Questions

In this paper we have looked only at levels of knowledge
for single formulas. However, levels of knowledge for
related formulas may be connected. For example, if
A = B ∨C, then L(B, s)∪L(C, s) ⊆ L(A, s). So one
could ask, given the Lindenbaum algebra A of ground
formulas and the Boolean algebra B of subsets of Σ∗c ,
which maps from A to B can arise as level maps? We
know that the maps must preserve order and that the
images must be regular, downward closed sets, but what
more can we show?

A second direction of inquiry is to ask how actual game
playing and knowledge interact. We have shown what
sorts of levels can arise and shown that they are relevant
to group strategies as well as to individual strategies
within groups. But clearly much more needs to be done.

A final line of research is to bring the current work into
closer contact with a lot of other work on knowledge
revision which begins with Plaza and proceeds through
[Ger], [BMP], [Dit]. We also need to relate the work
with the work of Stalnaker on models of knowledge
where probabilities are taken into account.
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