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Plan
X Monday Representing judgements; Introduction to judgement aggregation;

Aggregation paradoxes I

X Tuesday Aggregation paradoxes II, Axiomatic characterizations of
aggregation methods I

X Wednesday Axiomatic characterizations of aggregation methods II,
Distance-based characterizations

X Thursday Opinion pooling; Merging of probabilistic opinions
(Blackwell-Dubins Theorem); Aumann’s agreeing to disagree theorem and
related results

X Friday Belief polarization; Diversity trumps ability theorem (The Hong-Page
Theorem)
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So far...

I Aggregating judgements: single event, multiple issues, logically connected
issues, probabilistic opinions, imprecise probabilities, causal models, ...

I May’s Theorem: axiomatic characterization of majority rule

I Condorcet Jury Theorem: epistemic analysis of majority rule

I Aggregation paradoxes: multiple election paradox, doctrinal paradox,
discursive dilemma, the problem with conjunction, the corroboration paradox
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Judgement Aggregation

U. Endriss. Judgment Aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procac-
cia, editors, Handbook of Computational Social Choice, Cambridge University Press, 2016.

C. List. The theory of judgment aggregation: An introductory review. Synthese 187(1): 179-207,
2012.

D. Grossi and G. Pigozzi. Judgement Aggregation: A Primer. Morgan & Claypool Publishers, 2014.
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Propositions: Let L be a propositional language (with the usual Boolean
connectives).

Issues: I ⊆ L

Agenda: A = {p | p ∈ I} ∪ {¬p | p ∈ I}

Judgement set for i: Ji ⊆ A that is consistent and complete:
I Consistency: Standard notion of consistency for propositional logic.
I Completeness: For all ϕ ∈ I, ϕ ∈ Ji or ¬ϕ ∈ Ji.
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Notation:
I J = {J | J ⊆ A is consistent and complete }.
I If Ji ⊆ L, we write Ji(p) = 1 when p ∈ Ji and Ji(p) = 0 when p < Ji.
I If J = (J1, . . . , Jn), then let Jp = {i | p ∈ Ji}

Aggregation function: F : Jn → ℘(A)
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Properties

Universal Domain: The domain of F is the set of all possible profiles of
consistent and complete judgement sets.

Collective Rationality: F generates consistent and complete collective judgment
sets.

Anonymity: For all profiles (J1, . . . , Jn), F(J1, . . . , Jn) = F(Jπ(1), . . . , Jπ(n) where π is
a permutation of the voters.

Unanimity: For all profiles (J1, . . . , Jn) if p ∈ Ji for each i then p ∈ F(J1, . . . , Jn)
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Responsiveness Conditions
Systematicity: For any p, q ∈ A and all J = (J1, . . . , Jn) and J∗ = (J∗1, . . . , J

∗
n) in the

domain of F,

if [for all i ∈ N, p ∈ Ji iff q ∈ J∗i ]

then [p ∈ F(J) iff q ∈ F(J∗) ].

I independence
I neutrality

Independence: For any p ∈ A and all J = (J1, . . . , Jn) and J∗ = (J∗1, . . . , J
∗
n) in the

domain of F,

if [for all i ∈ N, p ∈ Ji iff p ∈ J∗i ]

then [p ∈ F(J) iff p ∈ F(J∗) ].
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Responsiveness Conditions

Monotonicity: For any p ∈ X and all (J1, . . . Ji, . . . , Jn) and (J1, . . . , J∗i , . . . , Jn) in the
domain of F,

if [p < Ji, p ∈ J∗i and p ∈ F(J1, . . . , Ji, . . . Jn)]
then [p ∈ F(J1, . . . , J∗i , . . . Jn)].
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Responsiveness Conditions

Non-dictatorship: There exists no i ∈ N such that, for any profile (J1, . . . , Jn),
F(J1, . . . , Jn) = Ji
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Agenda Richness

Whether or not judgment aggregation gives rise to serious impossibility results
depends on how the propositions in the agenda are interconnected.

Definition A set Y ⊆ L is minimally inconsistent if it is inconsistent and every
proper subset X ( Y is consistent.
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Agenda Richness

Definition An agenda X is minimally connected if
1. (non-simple) it has a minimal inconsistent subset Y ⊆ X with |Y | ≥ 3
2. (even-number-negatable) it has a minimal inconsistent subset Y ⊆ X such

that
Y − Z ∪ {¬z | z ∈ Z} is consistent

for some subset Z ⊆ Y of even size.
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Impossibility Theorems

Theorem (Dietrich and List, 2007) If (and only if) an agenda is non-simple and
even-number negatable, every aggregation rule satisfying universal domain,
collective rationality, systematicity and unanimity is a dictatorship (or inverse
dictatorship).

Theorem (Nehring and Puppe, 2002) If (and only if) an agenda is non-simple,
every aggregation rule satisfying universal domain, collective rationality,
systematicity unanimity, and monotonicity is a dictatorship.
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Characterization Result

p ∈ X conditionally entails q ∈ X, written p `∗ q provided there is a subset Y ⊆ X
consistent with each of p and ¬q such that {p} ∪ Y ` q.

Totally Blocked: X is totally blocked if for any p, q ∈ X there exists p1, . . . , pk ∈ X
such that

p = p1 `
∗ p2 `

∗ · · · `∗ pk = q
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Characterization Result

Theorem (Dietrich and List, 2007, Dokow Holzman 2010) If (and only if) an
agenda is totally blocked and even-number negatable, every aggregation rule
satisfying universal domain, collective rationality, independence and unanimity is
a dictatorship.

Theorem (Nehring and Puppe, 2002, 2010) If (and only if) an agenda is totally
blocked, every aggregation rule satisfying universal domain, collective rationality,
independence unanimity, and monotonicity is a dictatorship.

15 / 46



Proof Sketch, I

C ⊆ N is winning for p if for all profiles A = (A1, . . . ,An), if p ∈ Ai for all i ∈ C and
p < Aj for all j < C, then p ∈ F(A)

Cp = {C | C is winning for p}
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Proof Sketch, II

1. (The agenda is totally blocked.) Cp = Cq for all p, q. Let C = Cp for some p
(hence for all p).

2. (The agenda is even-number negatable.) If C ∈ C and C ⊆ C′, then C′ ∈ C.

3. (The agenda has a minimal consistent set with at least three elements.) If
C1,C2 ∈ C, then C1 ∩ C2 ∈ C.

4. N ∈ C.

5. For all C ⊆ N, either C ∈ C or C ∈ C.

6. There is an i ∈ N such that {i} ∈ C.

17 / 46



Proof Sketch, II

1. (The agenda is totally blocked.) Cp = Cq for all p, q. Let C = Cp for some p
(hence for all p).

2. (The agenda is even-number negatable.) If C ∈ C and C ⊆ C′, then C′ ∈ C.

3. (The agenda has a minimal consistent set with at least three elements.) If
C1,C2 ∈ C, then C1 ∩ C2 ∈ C.

4. N ∈ C.

5. For all C ⊆ N, either C ∈ C or C ∈ C.

6. There is an i ∈ N such that {i} ∈ C.

17 / 46



Proof Sketch, II

1. (The agenda is totally blocked.) Cp = Cq for all p, q. Let C = Cp for some p
(hence for all p).

2. (The agenda is even-number negatable.) If C ∈ C and C ⊆ C′, then C′ ∈ C.

3. (The agenda has a minimal consistent set with at least three elements.) If
C1,C2 ∈ C, then C1 ∩ C2 ∈ C.

4. N ∈ C.

5. For all C ⊆ N, either C ∈ C or C ∈ C.

6. There is an i ∈ N such that {i} ∈ C.

17 / 46



Proof Sketch, II

1. (The agenda is totally blocked.) Cp = Cq for all p, q. Let C = Cp for some p
(hence for all p).

2. (The agenda is even-number negatable.) If C ∈ C and C ⊆ C′, then C′ ∈ C.

3. (The agenda has a minimal consistent set with at least three elements.) If
C1,C2 ∈ C, then C1 ∩ C2 ∈ C.

4. N ∈ C.

5. For all C ⊆ N, either C ∈ C or C ∈ C.

6. There is an i ∈ N such that {i} ∈ C.

17 / 46



Proof Sketch, II

1. (The agenda is totally blocked.) Cp = Cq for all p, q. Let C = Cp for some p
(hence for all p).

2. (The agenda is even-number negatable.) If C ∈ C and C ⊆ C′, then C′ ∈ C.

3. (The agenda has a minimal consistent set with at least three elements.) If
C1,C2 ∈ C, then C1 ∩ C2 ∈ C.

4. N ∈ C.

5. For all C ⊆ N, either C ∈ C or C ∈ C.

6. There is an i ∈ N such that {i} ∈ C.

17 / 46



Proof Sketch, II

1. (The agenda is totally blocked.) Cp = Cq for all p, q. Let C = Cp for some p
(hence for all p).

2. (The agenda is even-number negatable.) If C ∈ C and C ⊆ C′, then C′ ∈ C.

3. (The agenda has a minimal consistent set with at least three elements.) If
C1,C2 ∈ C, then C1 ∩ C2 ∈ C.

4. N ∈ C.

5. For all C ⊆ N, either C ∈ C or C ∈ C.

6. There is an i ∈ N such that {i} ∈ C.

17 / 46



An employee-owned bakery must decide whether to buy a pizza oven (P) or a
fridge to freeze their outstanding Tiramisu (F). The pizza oven and the fridge
cannot be in the same room. So they also need to decide whether to rent an extra
room in the back (R). They all agree that they will rent the room if they decide to
buy both the pizza oven and the fridge: ((P ∧ F)→ R), but they are contemplating
renting the room regardless of the outcome of the vote on the appliances.

F. Cariani. Judgement Aggregation. Philosophy Compass, 6, 1, pgs. 22 - 32.
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P,F are reasons for R

¬P,¬F are not reasons for ¬R

¬R,P are reasons for ¬F
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A. Rubinstein and P. Fishburn. Algebraic Aggregation Theory. Journal of Economic Theory, 38, pp.
63 - 77, 1986.
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〈J1, J2, . . . , Jn〉 7→ J
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J1

J2
...

Jn

 7→ J
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J1

J2
...

Jn

 7→ (y1, y2, . . . , ym)
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x11 x12 · · · x1m

x21 x22 · · · x2m
...

...
. . .

...
xn1 xn2 · · · xnm

 7→ (y1, y2, . . . , ym)
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x11 x12 · · · x1m

x21 x22 · · · x2m
...

...
. . .

...
xn1 xn2 · · · xnm

 7→ f ((x11, . . . , x1m), (x21, . . . , x2m), . . . , (xn1, . . . , xnm))

Each xij is an element of a field B.

For i = 1, . . . , n, xi = (xi1, . . . , xim) is an element of a vector space X ⊆ Bm over B.

Aggregator: f : Xn → X
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C1: (x1j, . . . , xnj) = (x′1j, . . . , x
′
nj) implies fj(x1, . . . , xn) = fj(x′1, . . . , x

′
n)


x11 · · · x1j · · · x1m

x21 · · · x2j · · · x2m
...

. . .
...

. . .
...

xn1 · · · xnj · · · xnm

 7→ (f1(x1, x2, . . . , xn), . . . , fj(x1, x2, . . . , xn) , . . . , fm(x1, x2, . . . , xn))


x′11 · · · x′1j · · · x′1m
x′21 · · · x′2j · · · x′2m
...

. . .
...

. . .
...

x′n1 · · · x′nj · · · x′nm

 7→ (f1(x′1, x
′
2, . . . , x

′
n), . . . , fj(x′1, x

′
2, . . . , x

′
n) , . . . , fm(x′1, x

′
2, . . . , x

′
n))
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C2: (x1j, . . . , xnj) = (b, . . . , b) implies fj(x1, . . . , xn) = b


x11 · · · b · · · x1m

x21 · · · b · · · x2m
...

. . .
...

. . .
...

xn1 · · · b · · · xnm

 7→ (f1(x1, x2, . . . , xn), . . . , b , . . . , fm(x1, x2, . . . , xn))
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FC = {f ∈ F | f satisfies C1 and C2}

FA = {f ∈ F | f satisfies C1 and fj(y + z) = fj(y) + fj(z) for all j ≤ m
{f ∈ F | and column vectors for which y, z, y + z ∈ Xn

j }

FS = {f ∈ F | f there exists λ1, . . . , λn ∈ B such that
∑
λi = 1 and,

{f ∈ F | for all (x1, . . . , xn) ∈ Xn, f (x1, . . . , xn) =
∑
λixi}

FP = {f ∈ F | f there is an i = 1, . . . , n such that for all (x1, . . . , xn) ∈ Xn

{f ∈ F | f (x1, . . . , xn) = xi }
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Theorem 1. Suppose m ≥ 3 and X = {(x1, . . . , xm) ∈ Bm |
∑

j bjxj = b} with bj , 0 for
all j ≤ m. Then, FC ⊆ FA.

Corollary 1. Suppose m ≥ 3,
X = {(x1, . . . , xm) ∈ Rm |

∑
j bjxj = b and xj ≥ 0 for all j } with b and all bj positive.

Then FC ⊆ FA.

Corollary 2. Give the hypothesis of Theorem 1, let f ∈ FC. Then f ∈ FS if B is a
finite field, or if B = R and every fj is continuous or monotone.
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Theorem 1. Suppose m ≥ 3 and X = {(x1, . . . , xm) ∈ Bm |
∑

j bjxj = b} with bj , 0 for
all j ≤ m. Then, FC ⊆ FA.

y, z and y + z are n-element vectors in Bn

b is the n-element vector with all components equal to b.

We must show f (y + z) = f (y) + f (z).

We show that f1(y + z) = f1(y) + f1(z) (similar proof for other components)
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M1 = (y, 0, t)
M2 =

(
0, b1

b2
y, t

)
with t = (b − b1y)/b3

I For each j = 1, . . . , n, b1yj + b20 + b3tj = b
I For each j = 1, . . . , n, b10 + b2

b1
b2

yj + b3tj = b
I b1f1(y) + b20 + b3f (t) = b
I b10 + b2f2

(
b1
b2

y
)
+ b3f (t) = b

So, b1f1(y) = b2f2

(
b1
b2

y
)
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M1 = (y + z, 0,w)

M2 =
(
z, b1

b2
y,w

)
with w = (b − b1(y + z))/b3

I For each j = 1, . . . , n, b1(y + z)j + b20 + b3wj = b
I For each j = 1, . . . , n, b1zj + b2

b1
b2

yj + b3wj = b
I b1f1(y + z) + b20 + b3f (w) = b
I b1f1(z) + b2f2

(
b1
b2

y
)
+ b3f (w) = b

So, b1f1(y + z) = b1f1(z) + b2f2

(
b1
b2

y
)
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I b1f1(y) = b2f2

(
b1
b2

y
)

I b1f1(y + z) = b1f1(z) + b2f2

(
b1
b2

y
)

I So, b1f1(y + z) = b1f1(z) + b1f1(y); hence, f1(y + z) = f1(y) + f1(z)
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Suppose that n experts are asked to submit their probability pi = (pi1, . . . , pim) over
m ≥ 3 mutually exclusive and exhaustive events.

The aggregation for event j depends only on the experts’ probabilities for event j

If the aggregator satisfies C1 and C2, then Corollary 1 with
X = {(p1, . . . , pm) | pj ≥ 0 and

∑
pj = 1} implies that the aggregator is additive.

If it is also continuous, then Corollary 2 implies that the aggregator is a weighted
average of the experts’ probability vectors.
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Aggregating Probabilities

C. Genest and J. V. Zidek. Combining probability distributions: A critique and an annotated bibliog-
raphy. Statistical Science,1(1), pp. 114 - 135, 1986.

F. Dietrich and C. List. Probabilistic opinion pooling. in Oxford Handbook of Probability and Philos-
ophy, 2016.
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Probability

W is a set of states (or outcomes)

E is an algebra of events, or propositions: E ⊆ ℘(W) that is closed under
(countable) union and complement. (For present purposes, let E = ℘(W).)

A probability measure is a function P : E → [0, 1] such that
I P(W) = 1
I Finite Additivity: P(E1 ∪ E2) = P(E1) + P(E2) (E1 ∩ E2 = ∅)
I Countable Additivity: P(

⋃
i Ei) =

∑
i P(Ei) ({Ei} are pairwise disjoint)
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Probability

Let (W,E) be an algebra of events

Let P be the set of probability functions on (W,E)

Probabilistic aggregation function: F : Pn → P
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Aggregation Functions

Linear pooling: for all A ∈ E, f (P)(A) = w1P1(A) + · · ·wnPn(A), with
∑

i wi = 1

Geometric pooling: for all w ∈ W, f (P)(w) = c · [P1(w)]w1 · · · [Pn(w)]wn with∑
i wi = 1 and c = 1∑

w′∈W [Pi(w′)]w1 ···[Pi(w′)]wn

Multiplicative pooling: for all w ∈ W, f (P)(w) = c · [P1(w)] · · · [Pn(w)] with
c = 1∑

w′∈W [Pi(w′)]···[Pi(w′)]

Note that multiplicative pooling = geometric pooling with weights all equal to 1.

29 / 46



Aggregation Functions

Linear pooling: for all A ∈ E, f (P)(A) = w1P1(A) + · · ·wnPn(A), with
∑

i wi = 1

Geometric pooling: for all w ∈ W, f (P)(w) = c · [P1(w)]w1 · · · [Pn(w)]wn with∑
i wi = 1 and c = 1∑

w′∈W [Pi(w′)]w1 ···[Pi(w′)]wn

Multiplicative pooling: for all w ∈ W, f (P)(w) = c · [P1(w)] · · · [Pn(w)] with
c = 1∑

w′∈W [Pi(w′)]···[Pi(w′)]

Note that multiplicative pooling = geometric pooling with weights all equal to 1.

29 / 46



Aggregation Functions

Linear pooling: for all A ∈ E, f (P)(A) = w1P1(A) + · · ·wnPn(A), with
∑

i wi = 1

Geometric pooling: for all w ∈ W, f (P)(w) = c · [P1(w)]w1 · · · [Pn(w)]wn with∑
i wi = 1 and c = 1∑

w′∈W [Pi(w′)]w1 ···[Pi(w′)]wn

Multiplicative pooling: for all w ∈ W, f (P)(w) = c · [P1(w)] · · · [Pn(w)] with
c = 1∑

w′∈W [Pi(w′)]···[Pi(w′)]

Note that multiplicative pooling = geometric pooling with weights all equal to 1.

29 / 46



Example, I

W = {w1,w2}

P = (P1,P2,P3) with P1(w1) = 0.9, P2(w1) = 0.1, P3(w1) = 0.6

flin(P)(w1) = 1
3 ∗ 0.9 + 1

3 ∗ 0.1 + 1
3 ∗ 0.6 = 0.5333

fgeom(P)(w1) =
√

0.9∗0.1∗0.6
√

0.9∗0.1∗0.6+
√

0.1∗0.9∗0.4
= 0.5337

fmult(P)(w1) = 0.9∗0.1∗0.6
0.9∗0.1∗0.6+0.1∗0.9∗0.4 = 0.6
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Example, II
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Example, III
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Example, IV
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Example, V
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Linear Pooling

J. Aczel and C. Wagner. A characterization of weighted arithmetic means. SIAM Journal on Alge-
braic and Discrete Methods 1(3), pp. 259 - 260, 1980.

K. J. McConway. Marginalization and Linear Opinion Pools. Journal of the American Statistical
Association, 76(374), pp. 410 - 414, 1981.
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Eventwise Independence For each event A ∈ E, there exists a function
DA : [0, 1]n → [0, 1] such that for each P = (P1, . . . ,Pn),

f (P)(A) = DA(P1(A), . . . ,Pn(A))
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Unanimity preservation For every profile P = (P1, . . . ,Pn) in the domain of the
aggregation function f , if all Pi are identical, then f (P) is identical to them.
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Theorem (Aczel and Wagner 1980; McConway 1981) Suppose |W | > 2. The
linear pooling functions are the only eventwise-independent and
unanimity-preserving aggregation functions (with domain Pn).
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Conditioning and Linear Pooling

Suppose that there are two experts: N = {1, 2}.

Each expert has different information about a basket of fruit: W = {w1,w2,w3}

where

w1: there are precisely one apple and one banana in the basket
w2: there is precisely one pear in the basket
w3: there is precisely one apple in the basket

P1(w1) = 1
6 , P1(w2) = 2

3 , P1(w3) = 1
6

P2(w1) = 1
3 , P2(w2) = 1

3 , P2(w3) = 1
3
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P1(w1) = 1
6 , P1(w2) = 2

3 , P1(w3) = 1
6

P2(w1) = 1
3 , P2(w2) = 1

3 , P2(w3) = 1
3

E = {w2,w3}

(1
6 ,

2
3 ,

1
6 ) ( 1

3 ,
1
3 ,

1
3 )

( 3
12 ,

3
6 ,

3
12 )

(0, 2
3 ,

1
3 ) (0, 1

2 ,
1
2 )

(0, 7
12 ,

5
12 )

(0, 6
9 ,

3
9 )

flin flin

Learn E

Learn E

40 / 46



Conditioning and Linear Pooling

P1(w1) = 1
6 , P1(w2) = 2

3 , P1(w3) = 1
6

P2(w1) = 1
3 , P2(w2) = 1

3 , P2(w3) = 1
3

E = {w2,w3}

(1
6 ,

2
3 ,

1
6 ) ( 1

3 ,
1
3 ,

1
3 )

( 3
12 ,

3
6 ,

3
12 )

(0, 4
5 ,

1
5 ) (0, 1

2 ,
1
2 )

(0, 7
12 ,

5
12 )

(0, 6
9 ,

3
9 )

flin flin

Learn E

Learn E

40 / 46



Conditioning and Linear Pooling

P1(w1) = 1
6 , P1(w2) = 2

3 , P1(w3) = 1
6

P2(w1) = 1
3 , P2(w2) = 1

3 , P2(w3) = 1
3

E = {w2,w3}

(1
6 ,

2
3 ,

1
6 ) ( 1

3 ,
1
3 ,

1
3 )

( 3
12 ,

3
6 ,

3
12 )

(0, 4
5 ,

1
5 ) (0, 1

2 ,
1
2 )

(0, 13
20 ,

7
20 )

(0, 6
9 ,

3
9 )

flin flin

Learn E

Learn E

40 / 46



Conditioning and Linear Pooling

P1(w1) = 1
6 , P1(w2) = 2

3 , P1(w3) = 1
6

P2(w1) = 1
3 , P2(w2) = 1

3 , P2(w3) = 1
3

E = {w2,w3}

(1
6 ,

2
3 ,

1
6 ) ( 1

3 ,
1
3 ,

1
3 )

( 3
12 ,

3
6 ,

3
12 )

(0, 4
5 ,

1
5 ) (0, 1

2 ,
1
2 )

(0, 13
20 ,

7
20 )

(0, 6
9 ,

3
9 )

flin flin

Learn E

Learn E

40 / 46



Conditioning and Linear Pooling

F. Dietrich. Bayesian Group Belief. Social Choice and Welfare, 35, pp. 595 - 626, 2010.

H. Leitgeb. Imaging all the people. Episteme, 14(4), pp. 463-479, 2017.

K. Steele. Testimony as Evidence: More Problems for Linear Pooling. Journal of Philosophical
Logic, 41, pp. 983 - 999, 2012.
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Independence and Linear Pooling

K. Lehrer and C. Wagner. Probability amalgamation and the independence issue: a reply to
Laddaga. Synthese 55, pp. 339 - 346, 1983.

C. Wagner. On the Formal Properties of Averaging as a Method of Aggregation. Synthese, 62, pp.
97 - 108, 1985.

C. Wagner. Aggregating subjective probabilities: some limitative theorems. Notre Dame Journal of
Formal Logic, 25(3), pp. 233 - 240, 1984.
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RI (Respect for Individual Attributions of Independence) For any propositions
E and F and profile P = (P1, . . . ,Pn), if Pi(E ∩ F) = Pi(E)Pi(F) for all i = 1, . . . , n,
the f (P)(E ∩ F) = f (P)(E)f (P)(F)

Theorem (Wagner). Suppose that f : Pn → P. Then, f satisfies
eventwise-independence, unanimity-preservation and respect for individual
attributions of independence if, and only if, f is a dictatorship.
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1
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...

d 0 1
2

1
2 0 · · · 0

... 1
2

1
2 0 0 . . . 0

n 1
2

1
2 0 0 · · · 0

7→ (p1, . . . , pk)

p1 = w1p11 + w2p21 + · · · + wdpd1 + · · · + wnpn1 = 1
2

∑
j,d wj

p2 = w1p12 + w2p22 + · · · + wdpd2 + · · · + wnpn2 = 1
2

p3 = w1p13 + w2p23 + · · · + wdpd3 + · · · + wnpn3 = wd
1
2

p4 = w1p14 + w2p24 + · · · + wdpd4 + · · · + wnpn4 = 0
...

...
...

pk = w1p1k + w2p2k + · · · + wdpdk + · · · + wnpnk = 0
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Geometric Pooling

Geometric pooling: for all w ∈ W, f (P)(w) = c · [P1(w)]w1 · · · [Pn(w)]wn with∑
i wi = 1 and c = 1∑

w′∈W [Pi(w′)]w1 ···[Pi(w′)]wn

I Unanimity-preserving.

I Unlike linear pooling, it is not eventwise independent.

I However, it does satisfy external Bayesianity.

A. Madansky. Externally Bayesian groups. Technical Report RM-4141- PR, RAND Corporation,
1964.
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Bayesian Externality
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Bayesian Externality

Likelihood function: A function L : W → R+.

Given a function P : W → [0, 1], PL : W → [0, 1] where for all w ∈ W,
PL(w) = P(w)L(w)∑

w′∈W P(w′)L(w′) .

External Bayesianity. For every opinion profile P = (P1, . . . ,Pn) and every
likelihood function L, pooling and updating are commutative: f (P)L = f (PL), where
PL = (PL

1 , . . . ,P
L
n).
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Bayesian Externality

Theorem (Genest). The geometric pooling functions are externally Bayesian and
unanimity-preserving.

G. Genest. A characterization theorem for externally Bayesian groups. Annals of Statistics 12(3),
pp. 1100-1105, 1984.

C. Genest, K. J. McConway and M. J. Schervish. Characterization of externally Bayesian pooling
operators. Annals of Statistics 14(2), pp. 487-501, 1986.

F. Dietrich. A Theory of Bayesian Groups. Nous, 2017.
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Theorem. Update by general imaging (with respect to fixed transfer function T)
is the unique update mechanism that commutes with linear pooling with respect to
arbitrary coefficients.

H. Leitgeb. Imaging all the people. Episteme, 14(4), pp. 463 - 479, 2017.

P. Gärdenfors. Imaging and Conditionalization. The Journal of Philosophy, 79(12), pp. 747 - 760,
1982.
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