Aggregating Judgements:
 Logical and Probabilistic Approaches

Lecture 4

Eric Pacuit
Department of Philosophy
University of Maryland
pacuit.org

August 9, 2018

Plan

\checkmark Monday Representing judgements; Introduction to judgement aggregation; Aggregation paradoxes I
\checkmark Tuesday Aggregation paradoxes II, Axiomatic characterizations of aggregation methods I
\checkmark Wednesday Axiomatic characterizations of probabilistic opinions
Thursday Pooling imprecise probabilities; Distance-based characterizations; Merging of probabilistic opinions (Blackwell-Dubins Theorem); Aumann's agreeing to disagree theorem and related results

Friday Belief polarization; Diversity trumps ability theorem (The Hong-Page Theorem)

Aggregating imprecise probabilities

Imprecise Probabilities

1. What is the probability that a fair coin will land hands?

Imprecise Probabilities

1. What is the probability that a fair coin will land hands?
2. What is the probability of a coin of unknown bias will land heads?

Imprecise Probabilities

1. What is the probability that a fair coin will land hands?
2. What is the probability of a coin of unknown bias will land heads?

Ellsberg Paradox

Ellsberg Paradox

	30		60	
Lotteries	Blue		Yellow	Green
L_{1}	$1 M$	0	0	
L_{2}	0	$1 M$	0	
L_{3}	$1 M$	0	$1 M$	
L_{4}	0	$1 M$	$1 M$	

Ellsberg Paradox

	30			60	
Lotteries	Blue		Yellow	Green	
L_{1}	$1 M$		0	0	
L_{2}	0		$1 M$	0	
L_{3}	$1 M$	0	$1 M$		
L_{4}	0		$1 M$	$1 M$	

$$
L_{1} \geq L_{2} \quad \text { iff } L_{3} \geq L_{4}
$$

Indeterminate Probability

- Allow probability functions to take on sets of values instead of a single value
- Work with sets of probabilities rather than a single probability

Precisification Given a function $\sigma: \Sigma \rightarrow \wp([0,1])$, a probability function $p: \Sigma \rightarrow[0,1]$ of σ if and only if $p(A) \in \sigma(A)$ for each $A \in \Sigma$.

Indeterminate Probability A function $\sigma: \Sigma \rightarrow \wp([0,1])$ such that whenever $x \in \sigma(A)$ there is some precisifcation of σ, p for which $p(A)=x$.

Convexity A class of probability functions Π is convex if and only if whenever $p, q \in \Pi$, every mixture of p and q is in Π as well. I.e., $\alpha p+(1-\alpha) q \in \Pi$ for all $\alpha \in(0,1)$.

Proposition. If P is convex with σ it ambiguation, then $\sigma(A)$ is an interval for each A.

IP Pooling

$$
F: \mathcal{P}^{n} \rightarrow \wp(\mathcal{P})
$$

R. T. Stewart and I. Ojea Quintana. Probabilistic Opinion Pooling with Imprecise Probabilities. Journal of Philosophical Logic, 47(1), pp. 17-45, 2018.

IP Pooling

$$
F: \mathcal{P}^{n} \rightarrow \wp(\mathcal{P})
$$

R. T. Stewart and I. Ojea Quintana. Probabilistic Opinion Pooling with Imprecise Probabilities. Journal of Philosophical Logic, 47(1), pp. 17-45, 2018.

IP Pooling: For each $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \quad F(\mathbf{p})=\operatorname{conv}\left\{p_{i} \mid i=1, \ldots, n\right\}$, where $\operatorname{conv}(X)$ is the convex hull of a set X of probabilities.

Proposition (Stewart and Ojea Quintana) Convex IP pooling functions satisfy

 event-wise independence, unanimity preservation (and other properties of linear pooling studied in the literature)Proposition (Stewart and Ojea Quintana) Convex IP pooling functions satisfy event-wise independence, unanimity preservation (and other properties of linear pooling studied in the literature)

Proposition (Stewart and Ojea Quintana) Convex IP pooling functions are externally Bayesian.

Proposition (Stewart and Ojea Quintana) Convex IP pooling functions satisfy event-wise independence, unanimity preservation (and other properties of linear pooling studied in the literature)

Proposition (Stewart and Ojea Quintana) Convex IP pooling functions are externally Bayesian.

Proposition (Stewart and Ojea Quintana) Convex IP pooling functions are not individualwise Bayesian.

Individualwise Bayesian: For all $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ and likelihood functions L, $F^{L}(\mathbf{p})=F\left(p_{1}, \ldots, p_{k}^{L}, \ldots, p_{n}\right)$.

Aggregating IP

S. Moral and J. Del Sagrado. Aggregation of imprecise probabilities. In Aggregation and Fusion of Imperfect Information, pp. 162-188. Springer, 1998.
R. F. Nau. The aggregation of imprecise probabilities. Journal of Statistical Planning and Inference 105 (1), pp. 265-282, 2002.
(Among others...)

Distance-based characterization of aggregation methods
M. Miller and D. Osherson. Methods for distance-based judgment aggregation. Social Choice and Welfare, 32(4), pp. 575-601, 2009.
G. Pigozzi. Belief merging and the discursive dilemma: an argument-based account to paradoxes of judgment aggregation. Synthese, 152(2), pp. 285?298, 2006.
J. Lang, G. Pigozzi, M. Slavkovik, and L. van der Torre. Judgment aggregation rules based on minimization. In Proceedings of TARK, pp. 238-246, 2011.

Independence?

Independence: For any $p \in A$ and all $\mathbf{J}=\left(J_{1}, \ldots, J_{n}\right)$ and $\mathbf{J}^{*}=\left(J_{1}^{*}, \ldots, J_{n}^{*}\right)$ in the domain of F,

$$
\begin{aligned}
& \text { if [for all } i \in N, p \in J_{i} \text { iff } p \in J_{i}^{*} \text {] } \\
& \text { then }\left[p \in F(\mathbf{J}) \text { iff } p \in F\left(\mathbf{J}^{*}\right)\right] .
\end{aligned}
$$

Finding a group judgement set that is as close as possible to the group judgements will not satisfy independence.

Given $\left(J_{1}, \ldots, J_{n}\right)$, select the set consistent and complete J that minimizes the total distance from the individual judgement sets: find J such that $\sum_{i \in N} d\left(J, J_{i}\right)$ is minimized, where $d\left(J, J_{i}\right)$ is the distance between J and J_{i}

Given $\left(J_{1}, \ldots, J_{n}\right)$, select the set consistent and complete J that minimizes the total distance from the individual judgement sets: find J such that $\sum_{i \in N} d\left(J, J_{i}\right)$ is minimized, where $d\left(J, J_{i}\right)$ is the distance between J and J_{i}

Hamming Metric: $d\left(J, J^{\prime}\right)=$ the number of propositions for which J and J^{\prime} disagree

	p	q	$p \wedge q$
1	T	T	T
2	T	F	F
3	F	T	F
Majority	T	T	F

	p	q	$p \wedge q$
1	T	T	T
2	T	F	F
3	F	T	F
Majority	T	T	F
Premise	T	T	T

	p	q	$p \wedge q$
1	T	T	T
2	T	F	F
3	F	T	F
Majority	T	T	F
Premise	T	T	T
Hamming 1	F	T	F
Hamming 2	T	F	F

Differing on $\{a, b \wedge c\}$ may be considered more consequential than differing on $\{a, a \wedge b\}$.

Differing on $\{a, b \wedge c\}$ may be considered more consequential than differing on $\{a, a \wedge b\}$.

Let \mathcal{F} be the set of all judgement sets and \mathcal{F}° the set of all consistent judgement sets.
$d: \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}$
Axiom $1 d(A, B)=0$ iff $A=B$
Axiom $2 d(A, B)=d(B, A)$
Axiom $3 d(A, B) \leq d(A, C)+d(C, B)$
$d_{H}(\{p, q, p \wedge q\},\{p, \neg q, \neg(p \wedge q)\})=2$
$d_{H}(\{p, q, p \wedge q\},\{p, \neg q, \neg(p \wedge q)\})=2$

Shouldn't $d(\{p, q, p \wedge q\},\{p, \neg q, \neg(p \wedge q)\})=1$?
C. Duddy and A. Piggins. A measure of distance between judgement sets. Social Choice and Welfare, 39, pp. 855-867, 2012.

Duddy and Piggins Measure

Judgement set C is between judgement sets A and B if A, B and C are distinct and, on each proposition C agrees with A or with B (or both). (C is a compromise between A and B)

Duddy and Piggins Measure

Judgement set C is between judgement sets A and B if A, B and C are distinct and, on each proposition C agrees with A or with B (or both). (C is a compromise between A and B)

Draw a graph where the nodes are possible judgement sets and there is an edge between A and B provided there is no judgement set between them.

The distance between A and B is the length of the shortest path from A to B.

Axioms

Axiom $1 d(A, B)=0$ iff $A=B$
Axiom $2 d(A, B)=d(B, A)$
Axiom $3 d(A, B) \leq d(A, C)+d(C, B)$

Axioms

Axiom $1 d(A, B)=0$ iff $A=B$
Axiom $2 d(A, B)=d(B, A)$
Axiom $3 d(A, B) \leq d(A, C)+d(C, B)$
For all A, B, C, C is between A and B provided $A \neq B \neq C$ and $(A \cap B) \subset C$.

Axioms

Axiom $1 d(A, B)=0$ iff $A=B$
Axiom $2 d(A, B)=d(B, A)$
Axiom $3 d(A, B) \leq d(A, C)+d(C, B)$

For all A, B, C, C is between A and B provided $A \neq B \neq C$ and $(A \cap B) \subset C$.

Axiom 4 If there is a judgement set between A and B then there exists C different from A and B such that $d(A, B)=d(A, C)+d(C, B)$

Axioms

Axiom $1 d(A, B)=0$ iff $A=B$
Axiom $2 d(A, B)=d(B, A)$
Axiom $3 d(A, B) \leq d(A, C)+d(C, B)$

For all A, B, C, C is between A and B provided $A \neq B \neq C$ and $(A \cap B) \subset C$.

Axiom 4 If there is a judgement set between A and B then there exists C different from A and B such that $d(A, B)=d(A, C)+d(C, B)$

Axiom 5 If there is no judgement set between A and B with $A \neq B$ then $d(A, B)=1$

Theorem (Duddy \& Piggins) The previously defined metric is the unique metric satisfying Axioms 1-5.

	p	q	$p \wedge q$
1	T	T	T
2	T	F	F
3	F	T	F
Majority	T	T	F
Premise	T	T	T
Hamming 1	F	T	F
Hamming 2	T	F	F

	p	q	$p \wedge q$
1	T	T	T
2	T	F	F
3	F	T	F
Majority	T	T	F
Premise	T	T	T
Hamming 1	F	T	F
Hamming 2	T	F	F
DP-metric	T	T	T

Let J be a profile.
Find profiles J^{*} such that $\sum_{i} d\left(J_{i}, J\right)$ is minimized
VS.
Find profiles J^{*} that minimizes $\sum d\left(J, J^{*}\right)$
where profiles J and $J^{\prime}, \quad d\left(J, J^{\prime}\right)=\sum_{i \leq n} d\left(J_{i}, J_{i}^{\prime}\right)$
M. Miller and D. Osherson. Methods for distance-based judgement aggregation. Social Choice and Welfare, 32, pgs. 575-601, 2009.

For a profile $P, M(P) \in \mathcal{F}$ the judgement set resulting from majority rule. P is majority consistent provided $M(P) \in \mathcal{F}^{\circ}$
Fix a metric d and a profile $J \in \mathcal{F}^{\circ}$

For a profile $P, M(P) \in \mathcal{F}$ the judgement set resulting from majority rule. P is majority consistent provided $M(P) \in \mathcal{F}^{\circ}$
Fix a metric d and a profile $J \in \mathcal{F}^{\circ}$

- Full $_{d}(J)$ is the collection of $M\left(J^{\prime}\right) \in \mathcal{F}^{\circ}$ such that J^{\prime} minimizes $d\left(J, J^{\prime}\right)$ over all majority consistent profiles J^{\prime} in \mathcal{F}°

For a profile $P, M(P) \in \mathcal{F}$ the judgement set resulting from majority rule. P is majority consistent provided $M(P) \in \mathcal{F}^{\circ}$
Fix a metric d and a profile $J \in \mathcal{F}^{\circ}$

- Full $_{d}(J)$ is the collection of $M\left(J^{\prime}\right) \in \mathcal{F}^{\circ}$ such that J^{\prime} minimizes $d\left(J, J^{\prime}\right)$ over all majority consistent profiles J^{\prime} in \mathcal{F}°
- Output $_{d}(J)$ is the collection of $M\left(J^{\prime}\right) \in \mathcal{F}^{\circ}$ such that J^{\prime} minimizes $d\left(J, J^{\prime}\right)$ over all majority profiles J^{\prime} in \mathcal{F} (allowing inconsistencies)

For a profile $P, M(P) \in \mathcal{F}$ the judgement set resulting from majority rule. P is majority consistent provided $M(P) \in \mathcal{F}^{\circ}$
Fix a metric d and a profile $J \in \mathcal{F}^{\circ}$

- Full $d_{d}(J)$ is the collection of $M\left(J^{\prime}\right) \in \mathcal{F}^{\circ}$ such that J^{\prime} minimizes $d\left(J, J^{\prime}\right)$ over all majority consistent profiles J^{\prime} in \mathcal{F}°
- Output $_{d}(J)$ is the collection of $M\left(J^{\prime}\right) \in \mathcal{F}^{\circ}$ such that J^{\prime} minimizes $d\left(J, J^{\prime}\right)$ over all majority profiles J^{\prime} in \mathcal{F} (allowing inconsistencies)
- Endpoint $_{d}(J)$ is the collection of $K \in \mathcal{F}^{\circ}$ that minimize $d(J, K)$ over all majority consistent profiles J^{\prime}

For a profile $P, M(P) \in \mathcal{F}$ the judgement set resulting from majority rule. P is majority consistent provided $M(P) \in \mathcal{F}^{\circ}$

Fix a metric d and a profile $J \in \mathcal{F}^{\circ}$

- Full $_{d}(J)$ is the collection of $M\left(J^{\prime}\right) \in \mathcal{F}^{\circ}$ such that J^{\prime} minimizes $d\left(J, J^{\prime}\right)$ over all majority consistent profiles J^{\prime} in \mathcal{F}°
- Output $_{d}(J)$ is the collection of $M\left(J^{\prime}\right) \in \mathcal{F}^{\circ}$ such that J^{\prime} minimizes $d\left(J, J^{\prime}\right)$ over all majority profiles J^{\prime} in \mathcal{F} (allowing inconsistencies)
- Endpoint $_{d}(J)$ is the collection of $K \in \mathcal{F}^{\circ}$ that minimize $d(J, K)$ over all majority consistent profiles J^{\prime}
- Prototype $_{d}(J)$ is the collection of $K \in \mathcal{F}^{\circ}$ that minimize $\sum_{i \leq n} d\left(J_{i}, K\right)$ over all $K \in \mathcal{F}^{\circ}$

For J, K let $\operatorname{Ham}(J, K)$ denote the Hamming distance (the number of items on which J and K disagree)

$$
d(J, K)= \begin{cases}0.9 & \text { if } J \text { and } K \text { disagree only on } a \wedge b \\ \sqrt{\operatorname{Ham}(p, q)} & \text { otherwise }\end{cases}
$$

	a	b	$a \wedge b$	a	b	$a \wedge b$	a	b	$a \wedge b$
1	T	T	T	T	T	T	T	T	T
2	T	T	T	T	T	T	T	T	T
3	T	F	F	T	F	F	T	F	T
4	T	F	F	T	F	F	T	F	F
5	F	T	F	F	F	F	F	T	F
M	T	T	F	T	F	F	T	T	T

	a	b	$a \wedge b$	a	b	$a \wedge b$	a	b	$a \wedge b$
1	T	T	T	T	T	T	T	T	T
2	T	T	T	T	T	T	T	T	T
3	T	F	F	T	F	F	T	F	T
4	T	F	F	T	F	F	T	F	F
5	F	T	F	F	F	F	F	T	F
M	T	T	F	T	F	F	T	T	T

- $\operatorname{Full}_{d}(J)=\operatorname{TFF}(d(F T F, F F F)=1)$

	a	b	$a \wedge b$	a	b	$a \wedge b$	a	b	$a \wedge b$
1	T	T	T	T	T	T	T	T	T
2	T	T	T	T	T	T	T	T	T
3	T	F	F	T	F	F	T	F	T
4	T	F	F	T	F	F	T	F	F
5	F	T	F	F	F	F	F	T	F
M	T	T	F	T	F	F	T	T	T

- Full $_{d}(J)=$ TFF $(d(F T F, F F F)=1)$
- Output $_{d}(J)=T T T(d(T F F, T F T)=0.9)$

	a	b	$a \wedge b$	a	b	$a \wedge b$	a	b	$a \wedge b$
1	T	T	T	T	T	T	T	T	T
2	T	T	T	T	T	T	T	T	T
3	T	F	F	T	F	F	T	F	T
4	T	F	F	T	F	F	T	F	F
5	F	T	F	F	F	F	F	T	F
M	T	T	F	T	F	F	T	T	T

- $\operatorname{Full}_{d}(J)=\operatorname{TFF}(d(F T F, F F F)=1)$
- Output $_{d}(J)=T T T(d(T F F, T F T)=0.9)$
- Endpoint $_{d}(J)=T T T(d(T T F, T T T)=0.9)$

	a	b	$a \wedge b$	a	b	$a \wedge b$	a	b	$a \wedge b$
1	T	T	T	T	T	T	T	T	T
2	T	T	T	T	T	T	T	T	T
3	T	F	F	T	F	F	T	F	T
4	T	F	F	T	F	F	T	F	F
5	F	T	F	F	F	F	F	T	F
M	T	T	F	T	F	F	T	T	T

- $\operatorname{Full}_{d}(J)=\operatorname{TFF}(d(F T F, F F F)=1)$
- Output $_{d}(J)=T T T(d(T F F, T F T)=0.9)$
- Endpoint $_{d}(J)=T T T(d(T T F, T T T)=0.9)$
- Prototype $_{d}(J)=\{T T T, T F F\}\left(\sum_{i} d\left(J_{i}, T T T\right)=3 \sqrt{2}, \sum_{i} d\left(J_{i}, T F F\right)=3 \sqrt{2}\right.$, $\left.\sum_{i} d\left(J_{i}, F T F\right)=4 \sqrt{2}, \sum_{i} d\left(J_{i}, F F F\right)=2 \sqrt{3}+3\right)$

Rational Disagreement

Starting with the same premises, using (for example) first-order logic, two agents cannot disagree about whether a conclusion follows.

Starting with the same probability, using (for example) strict conditionalization, two agents cannot disagree about their posterior probability given the same evidence.

Learning in a group

1. Start with the same beliefs, receive the same evidence. (Convergence)
2. Start with the same beliefs, receive different evidence.
3. Start with different beliefs, receive the same evidence.
4. Start with different beliefs, receive different evidence. (Polarization)

Aumann's Agreeing to Disagree Theorem. Suppose that n agents share a common prior and have different private information. If there is common knowledge of the posteriors of a fixed event, then the posteriors must be equal.

Robert Aumann. Agreeing to Disagree. Annals of Statistics 4(6), pgs. 1236-1239 (1976).

An event/proposition is a (definable) subset $H \subseteq W$.
A σ-algebra is the collection of events/propositions (closed under countable unions and complementation)

An experiment/question/set of signals is a partition \mathcal{E} on W.

An experiment/question/set of signals is a partition \mathcal{E} on W.

If $w \in W$, let $\mathcal{E}[w]=E$ where $w \in E \in \mathcal{E}$.
E.g, if $\mathcal{E}=\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}$, then $\mathcal{E}[w]=E_{3}$

$K_{\mathcal{E}}: \wp(W) \rightarrow \wp(W)$, where for $H \subseteq W$,

$$
K_{\mathcal{E}}(H)=\{w \mid \mathcal{E}[w] \subseteq H\}
$$

$$
K_{\mathcal{E}}(H)=E_{1} \cup E_{3}
$$

$$
\begin{aligned}
K_{\mathcal{E}}(H) & =E_{1} \cup E_{3} \\
-K_{\mathcal{E}}(H) \cap-K_{\mathcal{E}}(-H) & =E_{2} \cup E_{4} \cup E_{5}
\end{aligned}
$$

$$
\begin{aligned}
K_{\mathcal{E}}(H) & =E_{1} \cup E_{3} \\
-K_{\mathcal{E}}(H) \cap-K_{\mathcal{E}}(-H) & =E_{2} \cup E_{4} \cup E_{5} \\
K_{\mathcal{E}}(-H) & =E_{6}
\end{aligned}
$$

If P is a probability on W (with respect to a σ-algebra \mathcal{F})

If P is a probability on W (with respect to a σ-algebra \mathcal{F})
The posterior at w with respect to \mathcal{E} is $P_{\mathcal{E}, w}(H)=P(H \mid \mathcal{E}[w])$

If P is a probability on W (with respect to a σ-algebra \mathcal{F})
The posterior at w with respect to \mathcal{E} is $P_{\mathcal{E}, w}(H)=P(H \mid \mathcal{E}[w])$

$$
\text { E.g., } P_{\mathcal{\mathcal { E } , w}}(H)=P\left(H \mid E_{1}\right)
$$

A basic result about probabilities.

For any finite partition $\mathcal{E}=\left\{E_{i}\right\}$ of W and an event H,

$$
P(H)=\sum_{i} P\left(E_{i}\right) P\left(H \mid E_{i}\right)
$$

$$
P(H)=P\left(H \cap E_{1}\right)+\cdots+P\left(H \cap E_{6}\right)
$$

$$
P(H)=P\left(H \cap E_{1}\right)+P\left(H \cap E_{2}\right)+\cdots+P\left(H \cap E_{6}\right)
$$

$$
\begin{aligned}
P(H) & =P\left(H \cap E_{1}\right)+\cdots+P\left(H \cap E_{6}\right) \\
& =\frac{P\left(E_{1}\right)}{P\left(E_{1}\right)} P\left(H \cap E_{1}\right)+\cdots+\frac{P\left(E_{6}\right)}{P\left(E_{6}\right)} P\left(H \cap E_{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
P(H) & =P\left(H \cap E_{1}\right)+\cdots+P\left(H \cap E_{6}\right) \\
& =\frac{P\left(E_{1}\right)}{P\left(E_{1}\right)} P\left(H \cap E_{1}\right)+\cdots+\frac{P\left(E_{6}\right)}{P\left(E_{6}\right)} P\left(H \cap E_{6}\right) \\
& =\sum_{i} P\left(E_{i}\right) P\left(H \mid E_{i}\right)
\end{aligned}
$$

A basic result about probabilities.

For any finite partition $\mathcal{E}=\left\{E_{i}\right\}$ of F and and event H,

$$
P(H \mid F)=\sum_{i} P\left(E_{i} \mid F\right) P\left(H \mid E_{i}\right)
$$

$$
\begin{aligned}
P(H \mid W) & =\sum_{i} P\left(E_{i} \mid W\right) P\left(H \mid E_{i} \cap W\right) \\
& =\sum_{i} P\left(E_{i} \mid W\right) P\left(H \mid E_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
P(H \mid F) & =\sum_{i} P\left(E_{i} \mid F\right) P\left(H \mid E_{i} \cap F\right) \\
& =\sum_{i} P\left(E_{i} \mid F\right) P\left(H \mid E_{i}\right)
\end{aligned}
$$

Everyone Knows: $K(H)=\bigcap_{i \in \mathscr{A}} K_{i}(H)$
$K^{m}(H)$ for all $m \geq 0$ is defined as:
$K^{0}(H)=H \quad K^{m}(H)=K\left(K^{m-1}(H)\right)$

Common Knowledge: $C: \wp(W) \rightarrow \wp(W)$ with

$$
C(H)=\bigcap_{m \geq 0} K^{m}(H)
$$

$I_{C}(w)=\{v \mid$ there is a finite path from w to $v\}$

$$
C(H)=\left\{w \mid I_{C}(w) \subseteq H\right\}
$$

$I_{C}(w)=\{v \mid$ there is a finite path from w to $v\}$

$$
C(H)=\left\{w \mid I_{C}(w) \subseteq H\right\}
$$

Alternatively,
$w \in C(H)$ provided that there is a $F \subseteq W$ such that

1. $F \subseteq K(F)$
2. $F \subseteq H$

Theorem. Suppose that n agents share a common prior and have different private information. If there is common knowledge in the group of the posterior probabilities, then the posteriors must be equal.

Robert Aumann. Agreeing to Disagree. Annals of Statistics 4 (1976).

Suppose that W is, $E \subseteq W$ is an event, and two (or more) agents with partitions \mathcal{E}_{i}. Let P be the common prior.

The agent's posterior probabilities of the event E are random variables: $P_{i}^{E}: W \rightarrow[0,1], P_{i}^{E}(w)=P\left(E \mid \mathcal{E}_{i}[w]\right)$.

So, $\llbracket P_{i}^{E}=r \rrbracket=\left\{w \mid P_{i}^{E}(w)=r\right\}$

Assume that $w \in C\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \|\right)$.

$$
I_{C}(w) \subseteq \llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket
$$

$$
P\left(E \mid \mathcal{E}_{1}[w]\right)=q, P\left(E \mid \mathcal{E}_{2}[w]\right)=r
$$

$$
P\left(E \mid \mathcal{E}_{1}[w]\right)=P\left(E \mid \mathcal{E}_{1}[x]\right)=P\left(E \mid \mathcal{E}_{1}[y]\right)=P\left(E \mid \mathcal{E}_{1}[z]\right)=q
$$

$$
P(H \mid F)=\sum_{i} P\left(E_{i} \mid F\right) P\left(H \mid E_{i}\right)
$$

Fact. If $P\left(H \mid E_{i}\right)=q$ for all i, then $P(H \mid F)=q$.

Fact. Suppose that $\left\{F_{i}\right\}$ is a partition of F (so $F=\bigcup_{i} F_{i}$ and $F_{i} \cap F_{j} \neq \emptyset$ for $i \neq j$). If $P\left(E \mid F_{i}\right)=q$ for all i, then $P(E \mid F)=q$.

If $P\left(E \mid F_{i}\right)=q$, then $P\left(E \cap F_{i}\right)=q P\left(F_{i}\right)$.

$$
\begin{gathered}
P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{P\left(\left(E \cap F_{1}\right) \cup \cdots \cup\left(E \cap F_{n}\right)\right)}{P(F)} \\
=\frac{P\left(E \cap F_{1}\right)+\cdots+P\left(E \cap F_{n}\right)}{P(F)}=\frac{q P\left(F_{1}\right)+\cdots+q P\left(F_{n}\right)}{P(F)} \\
=\frac{q\left(P\left(F_{1}\right)+\cdots+P\left(F_{n}\right)\right)}{P(F)}=\frac{q P(F)}{P(F)}=q
\end{gathered}
$$

$$
\begin{gathered}
P\left(E \mid \mathcal{E}_{1}[w]\right)=P\left(E \mid \mathcal{E}_{1}[x]\right)=P\left(E \mid \mathcal{E}_{1}[y]\right)=P\left(E \mid \mathcal{E}_{1}[z]\right)=q \\
\text { So, } P\left(E \mid I_{C}(w)\right)=q .
\end{gathered}
$$

$$
\begin{gathered}
P\left(E \mid \mathcal{E}_{2}[w]\right)=P\left(E \mid \mathcal{E}_{2}[x]\right)=P\left(E \mid \mathcal{E}_{2}[y]\right)=P\left(E \mid \mathcal{E}_{2}[z]\right)=r \\
\text { So, } P\left(E \mid I_{C}(w)\right)=r .
\end{gathered}
$$

Thus, $q=P\left(E \mid I_{C}(w)\right)=r$.

Common r-belief

The typical example of an event that creates common knowledge is a public announcement.

Common r-belief

The typical example of an event that creates common knowledge is a public announcement.

Shouldn't one always allow for some small probability that a participant was absentminded, not listening, sending a text, checking Facebook, proving a theorem, asleep, ...
D. Monderer and D. Samet. Approximating Common Knowledge with Common Beliefs. Games and Economic Behavior (1989).

From Knowledge to r-Belief

Given a partition \mathcal{E}, define $K_{\mathcal{E}}: \wp(W) \rightarrow \wp(W)$ as:

$$
K_{\mathcal{E}}(H)=\{w \mid \mathcal{E}[w] \subseteq H\}
$$

From Knowledge to r-Belief

Given $r \in[0,1]$ and a partition \mathcal{E}, define $B_{\mathcal{E}}^{r}: \wp(W) \rightarrow \wp(W)$ as: $B_{\mathcal{E}}^{r}(H)=\left\{w \mid P_{\mathcal{E}, w}(H) \geq r\right\}$

From Knowledge to r-Belief

Given $r \in[0,1]$ and a partition \mathcal{E}, define $B_{\mathcal{E}}^{r}: \wp(W) \rightarrow \wp(W)$ as: $B_{\mathcal{E}}^{r}(H)=\left\{w \mid P_{\mathcal{E}, w}(H) \geq r\right\}$

From Common Knowledge to Common r-Belief

Suppose that $C: \wp(W) \rightarrow \wp(W)$ is a common knowledge operator. TFAE

1. $w \in C(H)=\bigcap_{m \geq 0} K^{m}(H)$
2. $I_{c}(w) \subseteq H$
3. There is a set $F \subseteq W$ such that
$3.1 w \in F \subseteq K(F)=\bigcap_{i} K_{i}(F)$
$3.2 F \subseteq H$

$$
0
$$

0

From Common Knowledge to Common r-Belief

$$
B_{i}^{r}(E)=\left\{w \mid P\left(E \mid \mathcal{E}_{i}[w]\right) \geq r\right\}
$$

From Common Knowledge to Common r-Belief

$$
B_{i}^{r}(E)=\left\{w \mid P\left(E \mid \mathcal{E}_{i}[w]\right) \geq r\right\}
$$

F is an evident r-belief if for each $i \in \mathcal{A}, F \subseteq B_{i}^{r}(F)$

From Common Knowledge to Common r-Belief

$B_{i}^{r}(E)=\left\{w \mid P\left(E \mid \mathcal{E}_{i}[w]\right) \geq r\right\}$
F is an evident r-belief if for each $i \in \mathcal{A}, F \subseteq B_{i}^{r}(F)$

An event H is common r-belief at w if there exists and evident r-belief event F such that $w \in F$ and for all $i \in \mathcal{A}, F \subseteq B_{i}^{r}(H)$
$w \in C(H)$ iff there is an event $F \subseteq W$ such that

1. $w \in F \subseteq K(F)=\bigcap_{i} K_{i}(F)$
2. $F \subseteq H$
$w \in C^{r}(H)$ iff there is an event $F \subseteq W$ such that
3. $w \in F \subseteq B^{r}(F)=\bigcap_{i} B_{i}^{r}(F)$
4. $F \subseteq B^{r}(H)$
0

- $\left\{w_{1}\right\}=B_{a}^{0.9}\left(H_{1} \cap H_{2}\right) \cap B_{b}^{0.8}\left(H_{1} \cap H_{2}\right)$.
- $X=\left\{w_{1}\right\}$ is an evident 0.8 -belief for both Ann and Bob.

- $\left\{w_{1}\right\}=B_{a}^{0.9}\left(H_{1} \cap H_{2}\right) \cap B_{b}^{0.8}\left(H_{1} \cap H_{2}\right)$.
- $X=\left\{w_{1}\right\}$ is an evident 0.8 -belief for both Ann and Bob.
- $X \subseteq B_{a}^{0.8}\left(H_{1} \cap H_{2}\right) \cap B_{b}^{0.8}\left(H_{1} \cap H_{2}\right)$.
- $w_{1} \in C_{a, b}^{0.8}\left(H_{1} \cap H_{2}\right)$.

Generalizing Aumann's Theorem

Theorem. If the posteriors of an event E are common p-belief at some state w, then any two posteriors can differ by at most $1-p$.
D. Samet and D. Monderer. Approximating Common Knowledge with Common Beliefs. Games and Economic Behavior, Vol. 1, No. 2, 1989.

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$.
There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Fact. For any $H, Z_{1}, Z_{2}, P\left(H \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(H \mid Z_{1} \cap Z_{2}\right)$

Fact. For any $H, Z_{1}, Z_{2}, P\left(H \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(H \mid Z_{1} \cap Z_{2}\right)$

$$
P\left(H \mid Z_{1}\right)=\frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)}
$$

Fact. For any $H, Z_{1}, Z_{2}, P\left(H \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(H \mid Z_{1} \cap Z_{2}\right)$

$$
\begin{aligned}
P\left(H \mid Z_{1}\right) & =\frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)}
\end{aligned}
$$

Fact. For any $H, Z_{1}, Z_{2}, P\left(H \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(H \mid Z_{1} \cap Z_{2}\right)$

$$
\begin{aligned}
P\left(H \mid Z_{1}\right) & =\frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1} \cap Z_{2}\right)}
\end{aligned}
$$

Fact. For any $H, Z_{1}, Z_{2}, P\left(H \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(H \mid Z_{1} \cap Z_{2}\right)$

$$
\begin{aligned}
P\left(H \mid Z_{1}\right) & =\frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \\
& =P\left(Z_{2} \mid Z_{1}\right) \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1} \cap Z_{2}\right)}
\end{aligned}
$$

Fact. For any $H, Z_{1}, Z_{2}, P\left(H \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(H \mid Z_{1} \cap Z_{2}\right)$

$$
\begin{aligned}
P\left(H \mid Z_{1}\right) & =\frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \\
& =P\left(Z_{2} \mid Z_{1}\right) \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \\
& \geq P\left(Z_{2} \mid Z_{1}\right) \frac{P\left(H \cap Z_{1} \cap Z_{2}\right)}{P\left(Z_{1} \cap Z_{2}\right)}
\end{aligned}
$$

Fact. For any $H, Z_{1}, Z_{2}, P\left(H \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(H \mid Z_{1} \cap Z_{2}\right)$

$$
\begin{aligned}
P\left(H \mid Z_{1}\right) & =\frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1}\right)} \\
& =\frac{P\left(Z_{1} \cap Z_{2}\right)}{P\left(Z_{1}\right)} \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \\
& =P\left(Z_{2} \mid Z_{1}\right) \frac{P\left(H \cap Z_{1}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \\
& \geq P\left(Z_{2} \mid Z_{1}\right) \frac{P\left(H \cap Z_{1} \cap Z_{2}\right)}{P\left(Z_{1} \cap Z_{2}\right)} \\
& =P\left(Z_{2} \mid Z_{1}\right) P\left(H \mid Z_{1} \cap Z_{2}\right)
\end{aligned}
$$

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$. There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Let $Z_{1}=B_{1}^{p}(F)$ and $Z_{2}=B_{2}^{p}(F)$.

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$. There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Let $Z_{1}=B_{1}^{p}(F)$ and $Z_{2}=B_{2}^{p}(F)$.
From the previous Fact:

1. $P\left(E \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(E \mid Z_{1} \cap Z_{2}\right)$
2. $P\left(\bar{E} \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(\bar{E} \mid Z_{1} \cap Z_{2}\right)$

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$. There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Let $Z_{1}=B_{1}^{p}(F)$ and $Z_{2}=B_{2}^{p}(F)$.
Since $P\left(Z_{2} \mid Z_{1}\right) \geq P\left(B^{p}(E) \mid Z_{1}\right) \geq p$,

1. $P\left(E \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(E \mid Z_{1} \cap Z_{2}\right) \geq p P\left(E \mid Z_{1} \cap Z_{2}\right)$
2. $P\left(\bar{E} \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(\bar{E} \mid Z_{1} \cap Z_{2}\right) \geq p P\left(\bar{E} \mid Z_{1} \cap Z_{2}\right)$

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$. There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Let $Z_{1}=B_{1}^{p}(F)$ and $Z_{2}=B_{2}^{p}(F)$.
Since $P\left(Z_{2} \mid Z_{1}\right) \geq P\left(B^{p}(E) \mid Z_{1}\right) \geq p$,

1. $P\left(E \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(E \mid Z_{1} \cap Z_{2}\right) \geq p P\left(E \mid Z_{1} \cap Z_{2}\right)$
2. $P\left(\bar{E} \mid Z_{1}\right) \geq P\left(Z_{2} \mid Z_{1}\right) P\left(\bar{E} \mid Z_{1} \cap Z_{2}\right) \geq p P\left(\bar{E} \mid Z_{1} \cap Z_{2}\right)$

So, $1-P\left(E \mid Z_{1}\right) \geq p\left(1-P\left(E \mid Z_{1} \cap Z_{2}\right)\right)$

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$. There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Let $Z_{1}=B_{1}^{p}(F)$ and $Z_{2}=B_{2}^{p}(F)$.
Since $P\left(E \mid Z_{1}\right)=r$,

1. $P\left(E \mid Z_{1}\right) \geq p P\left(E \mid Z_{1} \cap Z_{2}\right)$

So, $r \geq p P\left(E \mid Z_{1} \cap Z_{2}\right)$
2. $1-P\left(E \mid Z_{1}\right) \geq p\left(1-P\left(E \mid Z_{1} \cap Z_{2}\right)\right)$

So, $1-r \geq p\left(1-P\left(E \mid Z_{1} \cap Z_{2}\right)\right)$

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$. There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Let $Z_{1}=B_{1}^{p}(F)$ and $Z_{2}=B_{2}^{p}(F)$.
Since $P\left(E \mid Z_{1}\right)=r$,

1. $P\left(E \mid Z_{1}\right) \geq p P\left(E \mid Z_{1} \cap Z_{2}\right)$

So, $r \geq p P\left(E \mid Z_{1} \cap Z_{2}\right)$
2. $1-P\left(E \mid Z_{1}\right) \geq p\left(1-P\left(E \mid Z_{1} \cap Z_{2}\right)\right)$

So, $1-r \geq p\left(1-P\left(E \mid Z_{1} \cap Z_{2}\right)\right)$

$$
p P\left(E \mid Z_{1} \cap Z_{2}\right) \leq r \leq 1-p+p P\left(E \mid Z_{1} \cap Z_{2}\right)
$$

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$. There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Let $Z_{1}=B_{1}^{p}(F)$ and $Z_{2}=B_{2}^{p}(F)$.
(Similar argument for player 2: $P\left(E \mid Z_{2}\right)=r$ and $P\left(Z_{1} \mid Z_{2}\right) \geq p$)

$$
\begin{aligned}
& p P\left(E \mid Z_{1} \cap Z_{2}\right) \leq r \leq 1-p+p P\left(E \mid Z_{1} \cap Z_{2}\right) \\
& p P\left(E \mid Z_{2} \cap Z_{1}\right) \leq q \leq 1-p+p P\left(E \mid Z_{2} \cap Z_{1}\right)
\end{aligned}
$$

Assume that $w \in C^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$. There is an $F \subseteq W$ such that:

1. $F \subseteq B^{p}(F)=\bigcap_{i} B_{i}^{p}(F)$
2. $F \subseteq B^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)=\bigcap_{i} B_{i}^{p}\left(\llbracket P_{1}^{E}=r \wedge P_{2}^{E}=q \rrbracket\right)$

Let $Z_{1}=B_{1}^{p}(F)$ and $Z_{2}=B_{2}^{p}(F)$.
(Similar argument for player 2: $P\left(E \mid Z_{2}\right)=r$ and $P\left(Z_{1} \mid Z_{2}\right) \geq p$)

$$
\begin{aligned}
& p P\left(E \mid Z_{1} \cap Z_{2}\right) \leq r \leq 1-p+p P\left(E \mid Z_{1} \cap Z_{2}\right) \\
& p P\left(E \mid Z_{2} \cap Z_{1}\right) \leq q \leq 1-p+p P\left(E \mid Z_{2} \cap Z_{1}\right)
\end{aligned}
$$

Hence, $|r-q| \leq 1-p+p P\left(E \mid Z_{2} \cap Z_{1}\right)-p P\left(E \mid Z_{2} \cap Z_{1}\right)=1-p$

Dynamic characterization of Aumann's Theorem

- How do the posteriors become common knowledge?
J. Geanakoplos and H. Polemarchakis. We Can't Disagree Forever. Journal of Economic Theory (1982).

Dynamic characterization of Aumann's Theorem

- How do the posteriors become common knowledge?
J. Geanakoplos and H. Polemarchakis. We Can't Disagree Forever. Journal of Economic Theory (1982).
- What happens when communication is not the the whole group, but pairwise?
R. Parikh and P. Krasucki. Communication, Consensus and Knowledge. Journal of Economic Theory (1990).

$$
t=0 \quad\left\langle W, \mathcal{E}_{0, a}, \mathcal{E}_{0, b}, p\right\rangle
$$

$$
\begin{gathered}
t=0 \\
\left\langle W, \mathcal{E}_{0, a}, \mathcal{E}_{0, b}, p\right\rangle \\
P_{0, a}^{E}(w)=r_{0} \quad P_{0, b}^{E}(w)=q_{0}
\end{gathered}
$$

$$
\begin{array}{cc}
t=0 & \left\langle W, \mathcal{E}_{0, a}, \mathcal{E}_{0, b}, p\right\rangle \\
& P_{0, a}^{E}(w)=r_{0} \quad P_{0, b}^{E}(w)=q_{0} \\
t=1 & \left\langle W, \mathcal{E}_{1, a}, \mathcal{E}_{1, b}, p\right\rangle
\end{array}
$$

$$
\begin{array}{cc}
t=0 & \left\langle W, \mathcal{E}_{0, a}, \mathcal{E}_{0, b}, p\right\rangle \\
& P_{0, a}^{E}(w)=r_{0} \quad P_{0, b}^{E}(w)=q_{0} \\
t=1 & \left\langle W, \mathcal{E}_{1, a}, \mathcal{E}_{1, b}, p\right\rangle \\
& P_{1, a}^{E}(w)=r_{1} \quad P_{1, b}^{E}(w)=q_{1}
\end{array}
$$

$$
\begin{array}{cc}
t=0 & \left\langle W, \mathcal{E}_{0, a}, \mathcal{E}_{0, b}, p\right\rangle \\
t=1 & P_{0, a}^{E}(w)=r_{0} \quad P_{0, b}^{E}(w)=q_{0} \\
& \left\langle W, \mathcal{E}_{1, a}, \mathcal{E}_{1, b}, p\right\rangle \\
t=2 & P_{1, a}^{E}(w)=r_{1} \quad P_{1, b}^{E}(w)=q_{1} \\
\left.t=3, \mathcal{E}_{2, a}, \mathcal{E}_{2, b}, p\right\rangle \\
& P_{2, a}^{E}(w)=r_{2} \quad P_{2, b}^{E}(w)=q_{2} \\
t=3 & \left\langle W, \mathcal{E}_{3, a}, \mathcal{E}_{3, b}, p\right\rangle
\end{array}
$$

Geanakoplos and Polemarchakis

- Assuming that the information partitions are finite, given an event A, the revision process converges in finitely many steps.

Geanakoplos and Polemarchakis

- Assuming that the information partitions are finite, given an event A, the revision process converges in finitely many steps.
- For each n, there are examples where the process takes n steps.

Geanakoplos and Polemarchakis

- Assuming that the information partitions are finite, given an event A, the revision process converges in finitely many steps.
- For each n, there are examples where the process takes n steps.
- An indirect communication equilibrium is not necessarily a direct communication equilibrium.

What type of information exchanges should be used in a dynamic characterization of Monderer and Samet's generalization of Aumann's Theorem?

That is, for an event F and an epistemic-probability model, what dynamic process will converge on a model in which there is common p-belief of the agents' current probabilities of F ?

