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Coordinated Attack/Email Game

J. Gray. Notes on database operating systems. in Operating Systems: An Ad-
vanced Course, Lecture Notes in Computer Science, Vol. 66, 1978.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549 - 587, 1990.

A. Rubinstein. The Electronic Mail Game: Strategic Behavior under ‘Almost Com-
mon Knowledge’. American Economic Review, 79, 385 - 391, 1989.
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Coordinated Attack/Email Game

I Two generals, each commanding a division of an army, want
to attack a common enemy.

I They will win the battle only if they attack the enemy
simultaneously; if only one division attacks, it will be defeated.

I Thus, the generals want to coordinate their attack.

I Unfortunately, the only way they have of communicating is by
means of messengers, who might get lost or captured by the
enemy.

I How many messages are needed for the generals to
coordinate their attack?
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The Guessing Game

Guess a number between 1 & 100.

The closest to 2/3 of the average wins.
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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.

What number should you guess? 100, 99, . . . , 67, . . . , 2, 1
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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.

What number should you guess? ��HH100,��ZZ99, . . . ,��ZZ67, . . . , �A2, 1
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Traveler’s Dilemma

1. You and your friend write down an integer between 2 and 100
(without discussing).

2. If both of you write down the same number, then both will
receive that amount in Euros from the airline in compensation.

3. If the numbers are different, then the airline assumes that the
smaller number is the actual price of the luggage.

4. The person that wrote the smaller number will receive that
amount plus 2 EUR (as a reward), and the person that wrote
the larger number will receive the smaller number minus 2
EUR (as a punishment).

Suppose that you are randomly paired with another person here at
ESSLLI. What number would you write down?
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I Belief paradoxes: The knower paradox, Buriden-Burge
sentences, Anti-expert sentences, Prior’s sentence

I The Brandenburger-Keisler (BK) paradox
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Buridan-Burge: p ↔ ¬Bap
Ba(p ↔ ¬Bap)

Anti-Expert: p ↔ Ba¬p
Ba(p ↔ Ba¬p)

Tyler Burge. Epistemic paradox. Journal of Philosophy, 81(1), pgs. 5 - 29, 1984.

Michael Caie. Belief and indeterminacy. The Philosophical Review, 121(1), pgs. 1
- 54, 2012.
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Prior’s Theorem

Q(∀p(Qp → ¬p))→ (∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p))

is a derivable using Universal Instantiation and propositional
reasoning.

A. N. Prior. On a family of paradoxes. Notre Dame Journal of Formal Logic, 2(1),
pgs. 16 - 32, 1961.
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Prior’s Theorem
1. ∀p (Qp → ¬p) → (Q( ∀p(Qp → ¬p) )→ ¬ ∀p(Qp → ¬p) )

(∀p ϕ(p) → ϕ[p/ q ])

2. Q(∀p(Qp → ¬p))→ (∀p(Qp → ¬p)→ ¬∀p(Qp → ¬p))
(( a → (b → c))→ (b → ( a → c)))

3. Q(∀p(Qp → ¬p))→ ¬∀p(Qp → ¬p)
((a → (b → ¬b))→ (a → ¬b))

4. Q(∀p(Qp → ¬p))→ ∃p(Qp ∧ p)
(¬∀pϕ↔ ∃p¬ϕ and ¬(a → ¬b)↔ (a ∧ b))

5. Q(∀p(Qp → ¬p))→ (Q(∀p(Qp → ¬p)) ∧ ¬∀p(Qp → ¬p))
((a → b)→ (a → (a ∧ b))

6. Q(∀p(Qp → ¬p))→ ∃p(Qp ∧ ¬p)
((Qϕ ∧ ¬ϕ)→ ∃p(Qp ∧ ¬p))

7. Q(∀p(Qp → ¬p))→ (∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p))
(((a → b) ∧ (a → c))→ (a → (b ∧ c)))
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Q(∀p(Qp → ¬p))→ (∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p))

I Qϕ := Ann believes that ϕ

If Ann believes that everything that Ann believes is wrong,
then Ann believes something true and Ann believes
something wrong.

I Qϕ := Ann says that ϕ

If Ann says that everything that Ann says is wrong, then Ann
says something true and Ann says something wrong.

I Qϕ := Ann wrote on the board at midnight that ϕ

If Ann wrote on the board at midnight that everything that Ann
wrote on the board at midnight is wrong, then Ann wrote a
true thing on the board at midnight and Ann wrote a false
thing on the board at midnight.
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A. Bacon, J. Hawthorne and G. Uzquiano. Higher-Order Free Logic and the Prior-
Kaplan Paradox. Forthcoming in Williamson on Modality.

A. Bacon and G. Uzquiano. Some results on the limits of thought. Journal of
Philosophical Logic, 2018.

R. H. Thomason and D. Tucker. Paradoxes of Intensionality. Review of Symbolic
Logic, 4, pgs. 394 - 411, 2011.
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The Epistemic Program in Game Theory

...the analysis constitutes a fleshing-out of the textbook
interpretation of equilibrium as ‘rationality’ plus correct beliefs.

E. Dekel and M. Siniscalchi. Epistemic Game Theory. Handbook of Game Theory
with Economic Applications, Volume 4, 2015, pgs. 619 - 702.

A. Brandenburger. The Language of Game Theory. World Scientific Press, 2014.

A. Perea. Epistemic Game Theory: Reasoning and Choice. Cambridge University,
2012.

EP and O. Roy. Epistemic Foundations of Game Theory. Stanford Encyclopedia
of Philosophy, 2015.
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Doesn’t such talk of what Ann believes Bob believes about her,
and so on, suggest that some kind of self-reference arises in
games, similar to the well-known examples of self-reference in
mathematical logic.

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in
Games. Studia Logica (2006).

EP. Understanding the Brandenburger-Keisler Paradox. Studia Logica, 86(3), pgs.
435 - 454, 2007.

S. Abramsky and J. Zvesper. From Lawvere to Brandenburger-Keisler: interactive
forms of diagonalization and self-reference. 2010.

C. Baskent. Some non-classical approaches to the Brandenburger¢Keisler para-
dox . Logic Journal of the IGPL, 23(4): 533-552, 2015.
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

G: available actions, payoffs, structure of the decision problem

Eric Pacuit 16



The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

solution concepts are systematic descriptions of what players do

Eric Pacuit 16



The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

The game model includes information states of the players
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

Restrict to information states satisfying some rationality condition
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The Epistemic Program in Game Theory

Game G

Strategy Space

Ann’s States Bob’s States

Project onto the strategy space
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Ann’s Possible Types Bob’s Possible Types

“Conjecture” about Bob“Conjecture” about Ann

Is there a space where every possible conjecture is
considered by some type?

Eric Pacuit 17



A (game-theoretic) type of a player summarizes everything the
player knows privately at the beginning of the game which could
affect his beliefs about payoffs in the game and about all other
players’ types.

(Harsanyi argued that all uncertainty in a game can be equivalently
modeled as uncertainty about payoff functions.)
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Ann’s Possible Types Bob’s Possible Types

“Conjecture” about Bob“Conjecture” about Ann

Is there a space where every possible conjecture is
considered by some type? It depends...
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Results

Language for i: A set Li ⊆ ℘(T−i).

Richness Property for Li : For all X ∈ Li , if X , ∅, then there is
some type t ∈ Ti of player i such that X describes t ’s conjecture
about −i.

Li can’t be the set of all non-empty subsets. (Brandenburger,
2003)
Li can’t be the set of sets that are definable in first-order
logic. (Brandenburger and Keisler, 2006)
Li can’t be the set of sets definable in a propositional modal
logic with an assumption modality. (Brandenburger and
Keisler, 2006)
Li can be the set of compact subsets of a topological space
(Mariotti, Meier and Piccione, 2005)
· · ·
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The BK Paradox

Ann believes that Bob’s assumption is that Ann believes
that Bob’s assumption is wrong.

Does Ann believe that Bob’s assumption is wrong?

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in
Games. Studia Logica (2006).
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The BK Paradox

Ann believes that the strongest proposition that Bob
believes is that Ann believes that the strongest
proposition that Bob believes is false.

Does Ann believe that the strongest proposition that Bob believes
is false?
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The BK Paradox

Ann believes that the strangest proposition that Bob
believes is that Ann believes that the strangest
proposition that Bob believes is false.

Does Ann believe that the strangest proposition that Bob believes
is false?
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The BK Paradox

Ann believes that the most interesting proposition that
Bob believes is that Ann believes that the most
interesting proposition that Bob believes is false.

Does Ann believe that the most interesting proposition that Bob
believes is false?
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Suppose that At is a set of atomic propositions, A is a set of
agents, and Lab is a set of “labels” for propositions. The language
L:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Biϕ | γ is ϕ

Bdicto
i T(γ) | Bdicto

i F(γ) | B re
i T(γ) | B re

i F(γ)

where p ∈ At, i ∈ A, and γ ∈ Lab.

I Biϕ: “agent i believes that ϕ”
I γ is ϕ: “the definite description γ denotes the proposition

expressed by ϕ” (or “the γ-proposition is ϕ”).
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The BK Paradox

Ann believes that the strongest proposition that Bob
believes is that Ann believes that the strongest
proposition that Bob believes is wrong.

Does Ann believe that the strongest proposition that Bob believes
is wrong?
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The BK Paradox

Ann believes that the γ-proposition is that Ann believes
that the γ-proposition is wrong.

I Ba(γ is Bdicto
a F(γ))

I Ba(γ is B re
a F(γ))
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Ba(T(γ)), Ba(F(γ))Ba(γ)

Ba(γ is ϕ)

Ba(γ)
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Ba(γ is ϕ)

Ba(γ) Ba(T(γ)), Ba(F(γ))
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The BK Paradox

Ann believes that the strongest proposition that Bob
believes is that Ann believes that the strongest
proposition that Bob believes is false.

Does Ann believe that the strongest proposition that Bob believes
is false?
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The BK Paradox

Ann believes that the γ-proposition is that Ann believes
that the γ-proposition is false.

Claim 1. {Ba(γ is Bdicto
a F(γ))} is inconsistent in any modal logic

containing K , Nec, Cor , I, S2dicto

Claim 2. {Ba(γ is B re
a F(γ))} is inconsistent in any modal logic

containing K , Nec, Cor , I, S2re
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The Knower Paradox

Let T be a theory in the language of arithmetic that can prove the
Gödel-Carnap fixed-point theorem and K a (perhaps complex)
unary predicate in the language of T , such that, for every sentence
ϕ in the language of T , T satisfies:

I Kϕ→ ϕ

I If T ` ϕ, then T ` Kϕ

Then, T is inconsistent.

D. Kaplan and R. Montague. A Paradox Regained. Notre Dame Journal of Formal
Logic, 1, 1960, pp. 79-90.
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The Knower Paradox

P. Egré. The Knower Paradox in the Light of Provability Interpretations of Modal
Logic. Journal of Logic, Language and Information, 14, pgs. 13-48, 2005.
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The Knower Paradox

1. γ ↔ ¬Kpγq Gödel-Carnap Fixed-Point Lemma

1. γ ↔ ¬Kγ (Forget Gödel numbering)

2. γ → ¬Kγ Prop. Reasoning

3. Kγ → K¬Kγ Modal Reasoning

4. K¬Kγ → ¬Kγ T

5. Kγ → ¬Kγ Prop. Reasoning

6. ¬Kγ Prop. Reasoning

7. ¬Kγ → γ Prop. Reasoning

8. γ Prop. Reasoning

9. Kγ Nec

E
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Let T be a theory in the language of arithmetic that can prove the
Gödel-Carnap fixed-point theorem and B a (perhaps complex)
unary predicate in the language of T , such that, for every sentence
ϕ and ψ in the language of T , T satisfies:

I B¬Bϕ→ ¬Bϕ
I If T ` ϕ, then T ` Bϕ
I If T ` ϕ↔ ψ, then T ` Bϕ↔ Bψ

then T is inconsistent.

R. Thomason. A note on syntactical treatments of modality. Synthese 44, pgs.
391 - 395, 1980.
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Proposition. {Ba(γ is Bdicto
a F(γ))} is inconsistent in any modal

logic containing K , Nec, CorN, IN, S2dicto .

1. Bi(γ is Bdicto
i F(γ)) (assumption)

2. Bi(γ is Bdicto
i F(γ))→

(Bdicto
i F(γ)↔ Bi(¬Bdicto

i F(γ))) (S2dicto)

3. Bdicto
i F(γ)↔ Bi(¬Bdicto

i F(γ)) (MP, 1, 2)

...

10. Contradiction
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Proposition. {Ba(γ is B re
a F(γ))} is inconsistent in any modal logic

containing K , Nec, Cor , I, S2re .

1. Bi(γ is B re
i F(γ)) (assumption)

2. (γ is B re
i F(γ))→

(B re
i F(γ)↔ Bi(¬B re

i F(γ))) (S2re)

3. Bi(γ is B re
i F(γ))→

Bi(B re
i F(γ)↔ Bi(¬B re

i F(γ))) (Mon, 2)

...

22. Contradiction
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Taking Stock

I Propositional modal logic with definition descriptions for
propositions.

I On this analysis, the BK Paradox is not a paradox of
interactive beliefs.

I The proof of the BK Paradox is similar to the proof of the
Knower Paradox.
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Knower BB/AE BK

γ is ¬BiT(γ) p ↔ ¬Bip Bi(γ is ¬BiT(γ))

γ is BiF(γ) p ↔ Bi¬p Bi(γ is BiF(γ))
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γ is BiF(γ) E Bi(γ is BiF(γ)) E

p ↔ Bi¬p Bi(p ↔ Bi¬p) E
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The Absent-Minded Driver

Eric Pacuit 29



Games of Imperfect Information

o1 o2 o1 o2

d1 d2

d0
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The Absent-Minded Driver

An individual is sitting late at night in a bar planning his midnight
trip home. In order to get home he has to take the highway and get
off at the second exit.

Turning at the first exit leads into a
disastrous area (payoff 0). Turning at the second exit yields the
highest reward (payoff 4). If he continues beyond the second exit,
he cannot go back and at the end of the highway he will find a
motel where he can spend the night (payoff 1).
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The Absent-Minded Driver

The driver is absentminded and is aware of this fact. At an
intersection, he cannot tell whether it is the first or the second
intersection and he cannot remember how many he has passed
(one can make the situation more realistic by referring to the 17th
intersection).

While sitting at the bar, all he can do is to decide
whether or not to exit at an intersection. (pg. 7)

M. Piccione and A. Rubinstein. On the Interpretation of Decision Problems with
Imperfect Recall. Games and Econ Behavior, 20, pgs. 3- 24, 1997.
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Planning stage: While planning his trip home at the bar, the
decision maker is faced with a choice between “Continue;
Continue” and “Exit”. Since he cannot distinguish between the two
intersections, he cannot plan to “Exit” at the second intersection
(he must plan the same behavior at both X and Y ). Since “Exit” will
lead to the worst outcome (with a payoff of 0), the optimal strategy
is “Continue; Continue” with a guaranteed payoff of 1.
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Action stage: When arriving at an intersection, the decision maker
is faced with a local choice of either “Exit” or “Continue” (possibly
followed by another decision). Now the decision maker knows that
since he committed to the plan of choosing “Continue” at each
intersection, it is possible that he is at the second intersection.
Indeed, the decision maker concludes that he is at the first
intersection with probability 1/2. But then, his expected payoff for
“Exit” is 2, which is greater than the payoff guaranteed by following
the strategy he previously committed to. Thus, he chooses to
“Exit”.
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W. Schwarz. Lost Memories and Useless Coins: Revisiting the Absentminded
Driver. Synthese 192, 3011-3036, 2015.
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Thank you!
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