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Plan
X Monday Representing judgements; Introduction to judgement aggregation;

Aggregation paradoxes I

X Tuesday Aggregation paradoxes II, Axiomatic characterizations of
aggregation methods I

X Wednesday Axiomatic characterizations of aggregation methods II,
Distance-based characterizations

X Thursday Opinion pooling; Merging of probabilistic opinions
(Blackwell-Dubins Theorem); Aumann’s agreeing to disagree theorem and
related results

X Friday Belief polarization; Diversity trumps ability theorem (The Hong-Page
Theorem)
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Yesterday

I Aggregating judgements: single event, multiple issues, logically connected
issues, probabilistic opinions, imprecise probabilities, causal models, ...

I May’s Theorem: axiomatic characterization of majority rule

I Condorcet Jury Theorem: epistemic analysis of majority rule

I Aggregation paradoxes: multiple election paradox
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“Is a conflict between the proposition and combination winners necessarily bad?

... The paradox does not just highlight problems of aggregation and packaging,
however, but strikes at the core of social choice—both what it means and how to
uncover it. In our view, the paradox shows there may be a clash between two
different meanings of social choice, leaving unsettled the best way to uncover
what this elusive quantity is.” (pg. 234).

S. Brams, D. M. Kilgour, and W. Zwicker. The paradox of multiple elections. Social Choice and
Welfare, 15(2), pgs. 211 - 236, 1998.
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Anscombe’s Paradox

G. E. M. Anscombe. On Frustration of the Majority by Fulfillment of the Majority’s Will. Analysis,
36(4): 161-168, 1976.
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Anscombe’s Paradox

Majority Issue 1 Issue 2 Issue 3

Voter 1 Yes Yes No

Voter 2 No No No

Voter 3 No Yes Yes

Voter 4 Yes No Yes

Voter 5 Yes No Yes

Voters 4 & 5 support the outcome on a majority of issues
Voters 1,2 & 3 do not support the outcome on a majority of issues

A majority of voters do not support the majority outcome on a majority of issues.
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Avoiding Anscombe’s Paradox

The 3/4-Rule: For each proposal, if the set of voters that agree with the outcome
of voting on that proposal is at least three-fourths of the number of voters
(whatever the decision method employed to determine the outcome), then the set
of voters who disagree with a majority of the outcomes cannot comprise a
majority.

C. Wagner. Anscombe’s paradox and the rule of three-fourths. Theory and Decision, 15, pgs. 303
- 308, 1983.

G. Laffond and J. Jainé. Unanimity and the Anscombe’s Paradox. Top, 21, pgs. 590 - 611, 2013.
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The Doctrinal Paradox/Discursive Dilemma

Kornhauser and Sager. Unpacking the court. Yale Law Journal, 1986.

P. Mongin. The doctrinal paradox, the discursive dilemma, and logical aggregation theory. Theory
and Decision, 73(3), pp 315 - 355, 2012.

C. List and P. Pettit. Aggregating sets of judgments: An impossibility result. Economics and Philos-
ophy 18, pp. 89 - 110, 2002.
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Suppose that three experts independently form opinions about three propositions.
For instance,

1. c: “Carbon dioxide emissions are above the threshold x.”
2. c→ g: “If carbon dioxide emissions are above the threshold x, then there will

be global warming.”
3. g: “There will be global warming.”
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U c c→ g g

Expert 1 True True True

Expert 2 True False False

Expert 3 False True False

Group True True False
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Should we hire (h) candidate C?
Is C good at research (r)? Is C good at teaching (t)?

We should hire (h) if and only if r ∧ t.
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Suppose that there are five experts {1, 2, 3, 4, 5} that are asked about five atomic
sentences {p1, p2, p3, p4, p5} and the disjunction p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5.

Suppose that each expert i, believes pi, disbelieves each of the other atomic
propositions and believes the disjunction.

There is unanimous support for the disjunction p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5, but 0.8
support against each disjunct (i.e., for the negation of each disjunct).

F. Cariani. Local Supermajorities. Erkenntnis, 81(2), pp. 391 - 406, 2016.
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The Conjunction “Problem”

“In most civil cases, the plaintiff’s contention consists of several component
elements. So the multiplication law for the mathematical probability of a
conjunction entails that, if the contention as a whole is to be established on the
balance of mathematical probability, there must either be very few separate
components in the case or most of them must be established at a very high level
of probability. Since this constraint on the complexity of civil cases is unknown to
the law, the mathematicist analysis is in grave difficulties here. ”

L. J. Cohen. The Difficulty about Conjunction. in The Probable and The Provable, 1977.
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The Conjunction “Problem”

In a three element negligence case (breach of duty, causation, damages), a
plaintiff who proves each element to a 0.6 probability, will have proven her overall
claim to a very low probability of 0.216. Either the plaintiff wins the verdict based
on this low probability (if the jury focuses on elements) or the plaintiff loses
despite having met the condition of proving each element to the stated threshold.

A. P. Dawid. The Difficulty About Conjunction. Journal of the Royal Statistical Society. Series D
(The Statistician), 36(2/3), pp. 91- 97, 1987.

D. S. Schwartz and E. Sober. The Conjunction Problem and the Logic of Jury Findings. William &
Mary Law Review 619 (2017).
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The Corroboration Paradox

The corroboration paradox is said to occur whenever a sequence of evidentiary
propositions, each positively relevant to some hypothesis, fail to be mutually
corroborating with respect to that hypothesis.

Theorem If E1, . . .En are qualitatively independent, then for every family {cI}I⊆[n] of
real numbers belonging to the open interval (0, 1), there exists a probability
measure p defined on the algebra A generated by E1, . . . ,En and H such that

p(H | EI) = ci for every I ⊆ [n]

C. Wagner. The corroboration paradox. Synthese, 190(8), pp. 1455 - 1469, 2013.
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Philosophy department: Should we hire a logician, epistemologist or a
metaphysician?

(Rationality constraint: e ∨ l ∨ m)

Epistemologist? Logician? Metaphysician?
1 Yes Yes No
2 No Yes Yes
3 Yes No Yes
4 Yes No No
5 No Yes Yes

Majority Yes Yes Yes

University: You can’t hire three people.

(Feasibility constraint: ¬(e ∧ l ∧ m))

U. Endriss. Judgment Aggregation with Rationality and Feasibility Constraints. In Proceedings of
the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2018).
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Electing Diverse Committees
Choose a committee that consists of members from different parts of the
university and is diverse.

Social Sciences Natural Sciences Humanities
Ann Carol Ellen
Bob David Fred

Voter 1 Voter 2 Voter 3
Ann, David, Fred Bob, Carol, Fred Bob, David, Ellen

Winners: Bob, David, Fred
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Electing Diverse Committees

T. Ratliff. Selecting committees. Public Choice, 126, pp. 242 - 255, 2006.

T. Ratliff. Some startling inconsistencies when electing committees. Social Choice and Welfare,
21(3), pp. 433- 454, 2003.

T. Ratliff and D. Saari. Complexities of electing diverse committees. Social Choice and Welfare,
43(1), pp. 55 - 71, 2014.
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Taking stock

I Aggregating judgements: single event, multiple issues, logically connected
issues, probabilistic opinions, imprecise probabilities, causal models, ...

I May’s Theorem: axiomatic characterization of majority rule

I Condorcet Jury Theorem: epistemic analysis of majority rule

I Aggregation paradoxes: multiple election paradox, doctrinal paradox,
discursive dilemma, the problem with conjunction, the corroboration paradox
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Judgement Aggregation

U. Endriss. Judgment Aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procac-
cia, editors, Handbook of Computational Social Choice, Cambridge University Press, 2016.

C. List. The theory of judgment aggregation: An introductory review. Synthese 187(1): 179-207,
2012.

D. Grossi and G. Pigozzi. Judgement Aggregation: A Primer. Morgan & Claypool Publishers, 2014.
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Propositions: Let L be a propositional language (with the usual Boolean
connectives).

Issues: I ⊆ L

Agenda: A = {p | p ∈ I} ∪ {¬p | p ∈ I}

Judgement set for i: Ji ⊆ A that is consistent and complete:
I Consistency: Standard notion of consistency for propositional logic.
I Completeness: For all ϕ ∈ I, ϕ ∈ Ji or ¬ϕ ∈ Ji.
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Notation:
I J = {J | J ⊆ A is consistent and complete }.
I If Ji ⊆ L, we write Ji(p) = 1 when p ∈ Ji and Ji(p) = 0 when p < Ji.
I If J = (J1, . . . , Jn), then let Jp = {i | p ∈ Ji}

Aggregation function: F : Jn → ℘(A)
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Proposition-wise Majority:
Fmaj(J) = {p | p ∈ A and |Jp| > dn/2e}

Unanimity:
Fu(J) = {p | p ∈ A and |Jp| = n}

Threshold:
Ft(J) = {p | p ∈ A and |Jp|/n > tp}

where t = (tp)p∈A is a sequence of thresholds, one for each p ∈ A.
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Partition A into premises and conclusions: A = Prem ∪ Conc where
Prem ∩ Conc = ∅

For J = (J1, . . . , Jn), let JPrem = (J1 ∩ Prem, . . . , Jn ∩ Prem) and
JConc = (J1 ∩ Conc, . . . , Jn ∩ Conc)

Premise-based:
Fpb(J) = Fmaj(JPrem) ∪ {p | Fmaj(JPrem) |= p}
where ‘|=’ is the usual notion of logical consequence.

Conclusion-based:
Fcb(J) = Fmaj(JConc)
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a a→ b b

v1 1 1 1

v2 1 0 0

v3 0 1 0

Fmaj 1 1 0

Fu

F( 2
3 ,

2
3 ,

2
3 ) 1 1 0

F( 2
3 ,1,

2
3 ) 1 0

Fpb 1 1 1

Fcb 0
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Input Condition

Universal Domain: The domain of F is the set of all possible profiles of
consistent and complete judgement sets.
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Output Condition

Collective Rationality: F generates consistent and complete collective judgment
sets.
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Responsiveness Conditions

Systematicity: For any p, q ∈ A and all J = (J1, . . . , Jn) and J∗ = (J∗1, . . . , J
∗
n) in the

domain of F,

if [for all i ∈ N, p ∈ Ji iff q ∈ J∗i ]

then [p ∈ F(J) iff q ∈ F(J∗) ].

24 / 36



A = {p1, . . . , pm}

J = (J1, . . . , Jn),J∗ = (J1, . . . , Jn)

p1 p2 · · · pk · · · pm

J1(p1) J1(p2) · · · J1(pk) · · · J1(pm)
J2(p1) J2(p2) · · · J2(pk) · · · J2(pm)
...

...
. . .

...
. . .

...
Jl(p1) Jl(p2) · · · Jl(pk) · · · Jl(pm)
...

...
. . .

...
. . .

...
Jn(p1) Jn(p2) · · · Jn(pk) · · · Jn(pm)

F(J)(p1) F(J)(p2) · · · F(J)(pk) · · · F(J)(pm)
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A = {p1, . . . , pm}

J = (J1, . . . , Jn), J∗ = (J1, . . . , Jn)

p1 p2 · · · pk · · · pm

J1(p1) 1 · · · J1(pk) · · · J1(pm)
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...

...
. . .

...
. . .

...
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. . .
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A = {p1, . . . , pm}

J = (J1, . . . , Jn), J∗ = (J1, . . . , Jn)

p1 p2 · · · pk · · · pm
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Responsiveness Conditions
Systematicity: For any p, q ∈ A and all J = (J1, . . . , Jn) and J∗ = (J∗1, . . . , J

∗
n) in the

domain of F,

if [for all i ∈ N, p ∈ Ji iff q ∈ J∗i ]

then [p ∈ F(J) iff q ∈ F(J∗) ].

I independence
I neutrality

Independence: For any p ∈ A and all J = (J1, . . . , Jn) and J∗ = (J∗1, . . . , J
∗
n) in the

domain of F,

if [for all i ∈ N, p ∈ Ji iff p ∈ J∗i ]

then [p ∈ F(J) iff p ∈ F(J∗) ].
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Responsiveness Conditions

Anonymity: For all profiles (J1, . . . , Jn), F(J1, . . . , Jn) = F(Jπ(1), . . . , Jπ(n) where π is
a permutation of the voters.

Unanimity: For all profiles (J1, . . . , Jn) if p ∈ Ji for each i then p ∈ F(J1, . . . , Jn)

Monotonicity: For any p ∈ X and all (J1, . . . Ji, . . . , Jn) and (J1, . . . , J∗i , . . . , Jn) in the
domain of F,

if [p < Ji, p ∈ J∗i and p ∈ F(J1, . . . , Ji, . . . Jn)]
then [p ∈ F(J1, . . . , J∗i , . . . Jn)].
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Responsiveness Conditions

Non-dictatorship: There exists no i ∈ N such that, for any profile (J1, . . . , Jn),
F(J1, . . . , Jn) = Ji

28 / 36



Baseline Result

Theorem (List and Pettit, 2001) If X ⊆ {a, b, a ∧ b}, there exists no aggregation
rule satisfying universal domain, collective rationality, systematicity and anonymity.
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Agenda Richness

Whether or not judgment aggregation gives rise to serious impossibility results
depends on how the propositions in the agenda are interconnected.

Definition A set Y ⊆ L is minimally inconsistent if it is inconsistent and every
proper subset X ( Y is consistent.
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Agenda Richness

Definition An agenda X is minimally connected if
1. (non-simple) it has a minimal inconsistent subset Y ⊆ X with |Y | ≥ 3
2. (even-number-negatable) it has a minimal inconsistent subset Y ⊆ X such

that
Y − Z ∪ {¬z | z ∈ Z} is consistent

for some subset Z ⊆ Y of even size.
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Impossibility Theorems

Theorem (Dietrich and List, 2007) If (and only if) an agenda is non-simple and
even-number negatable, every aggregation rule satisfying universal domain,
collective rationality, systematicity and unanimity is a dictatorship (or inverse
dictatorship).

Theorem (Nehring and Puppe, 2002) If (and only if) an agenda is non-simple,
every aggregation rule satisfying universal domain, collective rationality,
systematicity unanimity, and monotonicity is a dictatorship.
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Characterization Result

p ∈ X conditionally entails q ∈ X, written p `∗ q provided there is a subset Y ⊆ X
consistent with each of p and ¬q such that {p} ∪ Y ` q.

Totally Blocked: X is totally blocked if for any p, q ∈ X there exists p1, . . . , pk ∈ X
such that

p = p1 `
∗ p2 `

∗ · · · `∗ pk = q
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Characterization Result

Theorem (Dietrich and List, 2007, Dokow Holzman 2010) If (and only if) an
agenda is totally blocked and even-number negatable, every aggregation rule
satisfying universal domain, collective rationality, independence and unanimity is
a dictatorship.

Theorem (Nehring and Puppe, 2002, 2010) If (and only if) an agenda is totally
blocked, every aggregation rule satisfying universal domain, collective rationality,
independence unanimity, and monotonicity is a dictatorship.
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Proof Sketch, I

C ⊆ N is winning for p if for all profiles A = (A1, . . . ,An), if p ∈ Ai for all i ∈ C and
p < Aj for all j < C, then p ∈ F(A)

Cp = {C | C is winning for p}
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Proof Sketch, II

1. (The agenda is totally blocked.) Cp = Cq for all p, q. Let C = Cp for some p
(hence for all p).

2. (The agenda is even-number negatable.) If C ∈ C and C ⊆ C′, then C′ ∈ C.

3. (The agenda has a minimal consistent set with at least three elements.) If
C1,C2 ∈ C, then C1 ∩ C2 ∈ C.

4. N ∈ C.

5. For all C ⊆ N, either C ∈ C or C ∈ C.

6. There is an i ∈ N such that {i} ∈ C.
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